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ABSTRACT 

In this paper, the scheduling of the flexible flow shop scheduling problem without unemployment is considered by consi-
dering the sequence-dependent preparation times with parallel and identical machines in each workstation in order to 
minimize the maximum completion time that has been done so far. The assumption of the existence of sequence-
dependent preparation times has not been observed in the literature on the issue of flexible workflow without unemploy-
ment. In this study, a mixed integer programming model for the problem is first developed. Since the problem under 
study is one of the NP-hard problems and the mathematical model solving software is not able to obtain the optimal solu-
tion of relatively large problems at a reasonable time, to provide a meta-heuristic method of genetic algorithm to obtain 
optimal solutions or close to optimal for the problem. The computational results show the relatively good performance of 
the genetic algorithm for solving problems in less time than the mathematical programming model. 
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1. INTRODUCTION 

Production scheduling focuses on the allocation of 
limited resources over time to carry out a group of differ-
ent activities. In the scheduling theory, resources and 
tasks are often known as machines and jobs, respectively 
(Ab Yajid, 2020; Thanh et al., 2021; Jalil et al., 2020; 
Matthews and Mokoena, 2020). Some of the most impor-
tant objectives of scheduling problems include the effi-
cient use of resources, quick response to demand and ac-
curate compliance of delivery times with the specified 
delivery date (Qazani et al., 2021; Shamsipur et al., 2012; 
Tirkolaee et al., 2020). A flexible flow shop scheduling 
problem is a developed form of general flow shop envi-
ronments and parallel machines, where C stations are 
arranged in series instead of m machines, such that m1 
equal machines are parallel to each other in each station 
of (L 1, 2, , c)L= … . Each task must be performed by one 
machine (one of the parallel machines) in each station, 
even though all machines can carry out the process (Bar-
zamini and Ghassemian, 2019; Johar and Alkawaz, 2018; 
Alhodiry et al., 2021). In other words, each job is per-
formed by one of the parallel machines in station 1, and 
then by one of the equal parallel machines in station 2 and 
ultimately by one of the equal machines in the last station. 
In some machine environments in operating environments, 
unemployment of a machine between the processing op-
erations of two jobs makes that machine environment or 
manufacturing industry unfeasible and uneconomical. 
This is one of the important aspects of industries such as 
fiberglass manufacturing, casting, production of inte-
grated circuits, steel manufacturing industries, dairy in-
dustries, textile industries, paint industries, among others 
(Dahmardeh et al., 2013; Sholpanbaeva et al., 2021; Nur-
salim, 2021). This is known as a non-permutation flow-
shop scheduling problem (NPFSP), where the unem-
ployment of machines is not allowed from the beginning 
of the first job to the end of the last job. Therefore, delay 
in the commence of jobs must occur in a way that the 
constraints related to the unemployment of each machine 
(i.e., idle time) are guaranteed to be zero. Two preparation 
processes are carried in scheduling problems to prepare 
the machines for jobs. In the first mode, preparation time 
is sequence-independent, meaning that preparation time is 
considered during the processing of the work by the ma-
chine. In the second mode, however, machine preparation 
time depends on the task that has been already processed 
by the machine (Fofack et al., 2020; Jaapar et al., 2020; 
Wafa, 2021; Alwreikat and Rjoub, 2020). Observed in 
most machine environments, the second preparation 
mode is recognized as sequence-dependent preparation 
time in the literature on scheduling issues. The present 
study aims to model a flexible flow shop scheduling prob-
lem without unemployment by considering sequence-
dependent preparation times in order to minimize the 

maximum completion time of works. To date, no research 
has been conducted to consider such an issue in flow shop 
problems (Alsunki et al., 2020; Singh et al., 2020; Kor-
mishkina et al., 2021; Ishenin et al., 2021). The remainder 
of the study is structured, as follows: Section 2 reviews 
the literature related to the topic under study while Sec-
tion 3 defines the problem and the model’s premises. Sec-
tion 4 provides the mathematical modeling of the problem, 
whereas Section 5 focuses on the validation of the pro-
posed mathematical model by LINGO software, solves 
the proposed problem using genetics algorithm (GA) and 
compares its quality and solution time with the mentioned 
software. Finally, Section 6 concludes and makes sugges-
tions for future studies.  

2. LITERATURE REVIEW  
Bernik (2021) were the first scholars who evaluated 

NPFSPs for the first time. In a study, they proposed a 
polynomial algorithm for a flow shop problem in a certain 
mode with two machines with the objective function of 
minimizing the total completion time of works. Ferina et 
al. (2021) studied an NPFSP with the objective function 
of minimizing the maximum completion time for the first 
time and proposed a branch-and-bound procedure for 
solving the problem. In a study, Narain and Bagga (2005) 
focused on n-job, 2-machine flow shop scheduling prob-
lems working under a “no-idle” constraint. They devel-
oped a branch-and-bound structure to solve the model and 
considered the objective function to be the minimization 
of mean flow shop. In the end, it was proven that the 
problem with the objective function of the total makespan 
of works was of NP-hard type. 

Saadani et al. (2003) treated the scheduling problem 
of three-stage permutation flow-shop configuration with 
no-idle machines. The idle characteristic is a very strong 
constraint, which can seriously affect the value of the ma-
kespan criterion. They proposed a heuristic to solve this 
problem with O(nlogn) complexity. Based on the previous 
study, Kamburowski (2004) identified a simple network 
representation of the makespan that provided a better in-
sight into the problem and improved the solution obtained 
for the no-idle flow shop problem. Saadani et al. (2005) 
investigated a no-idle flow shop problem, for which they 
proposed a mixed integer programming model and then 
developed a heuristic based on the idea that the problem 
could be modeled as a traveling salesman problem. In a 
study, Kalczynski and Kamburowski (2005) focused on the 
problem of finding a job sequence that minimizes the ma-
kespan in m-machine flow shops under the no-idle condi-
tion. Since the problem was NP-hard, they proposed a con-
structive heuristic for solving the problem that significantly 
outperformed heuristics known so far. Niu and Gu (2006) 
developed an improved genetic-based particle swarm op-
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timization for no-idle permutation flow shops with fuzzy 
processing time. Goncharov and Sevastyanov (2009) con-
sidered a flow shop problem with no-idle constraints and 
the objective function of minimizing the makespan of jobs. 
These researchers developed several polynomial-time heu-
ristics for special cases of 3 and 4 machines based on the 
geometric method. Nagano and Januário (2013) evaluated 
a no-idle flow shop scheduling problem with the objective 
of minimizing the makespan.  

Tasgetiren et al. (2013) presented a variable iterated 
greedy algorithm (IG) with differential evolution de-
signed to solve the no-idle permutation flow shop sche-
duling problem. The parameters of the algorithm included 
the destruction size and the probability of applying the IG 
algorithm to an individual. Pan and Ruiz (2014) studied 
the mixed no-idle extension where only some machines 
had the no-idle constraint. They used an NEH-based heu-
ristic to construct a high-quality initial solution. Sun and 
Gu (2017) proposed a novel hybrid estimation of the dis-
tribution algorithm and cuckoo search (CS) algorithm to 
solve the NIPFSP with the total tardiness criterion mini-
mization. The computational results indicated the proper 
performance of the hybrid algorithm presented in the 
foregoing study. Yazdani and Naderi (2016) considered 
the problem of scheduling no-idle hybrid flow shops. 
They developed a mixed-integer linear programming 
model to mathematically formulate the problem with the 
objective function of minimizing the maximum comple-
tion time of tasks. In the end, two metaheuristics based on 
variable neighborhood search and GAs were developed to 
solve larger instances. The computational results were 
indicative of the superior performance of GA. 

Nagano et al. (2019) addressed the issue of produc-
tion scheduling in a no-idle flow shop environment and 
proposed a quality constructive heuristic instance follow-
ing an extensive review of the literature. According to 
their results, integration of the heuristic method with the 
IG algorithm led to the higher efficiency of heuristic me-
thods. Goli et al. (2019) developed a mathematical model 
for scheduling manufacturing systems, where AGV was 
used for the transportation of parts. Improved GA was 
applied to solve the scheduling problem in the mentioned 
condition. The literature review revealed a lack of study 
on the hypothesis of sequence dependence of preparation 
times in NIPFSPs with the objective function of minimiz-
ing the maximum completion time of jobs, which is ad-
dressed in the present research.  

3. STATEMENT OF THE PROBLEM AND 
PREMISES  

The NPFSP is developed from a flexible flow shop 
problem, where the machines are not allowed to be idle 
from the commence of the first job until finishing the last 

job. Therefore, delays in the start of jobs must occur in a 
way that the constraints related to the unemployment of 
each machine are guaranteed to be zero. The preparation 
times in the problem assessed are sequence-dependent. 
The evaluated problem is exhibited in the form of 

maxFSS no idle,SDST C− based on the symbolizing by 
Graham et al. (1979) which express the NPFSP with se-
quence-dependent preparation times. The objective func-
tion is to minimize the maximum makespan of jobs. The 
following premises are considered for the problem: 

The preparation time of machines is sequence-
dependent. The idle time of the machine is equal to zero 
(there is no idle interval between the commence of the 
first job until finishing all tasks). There are parallel and 
similar machines in each stage (workstation). Notably, 
simultaneous performance of two operations of a job is 
not feasible. In other words, each task at each stage (sta-
tion) should only be processed on one of the parallel and 
identical machines. There is no interruption- i.e., a task 
remains on the machine until its processing is completed. 
There is no cancelation during the tasks, meaning that if 
an operation of a job is being processed, the next opera-
tions must also be processed. The transportation time be-
tween the machines is trivial, and there is unlimited sto-
rage between stations. Each machine is unable to process 
more than one job at a time. In addition, technical con-
straints are recognized and inflexible, and there is no sto-
chastic mode, meaning that the processing times, prepara-
tion times and the number of jobs have crisp values. 
There is no downtime and machines are constantly avail-
able during the programming period.  

4. MATHEMATICAL MODELING OF THE 
PROBLEM 

The indices used for modeling the problem are de-
fined below: 

4.1 Indices and Sets 

n : number of jobs  j, i : index of jobs j, i 1, 2, … , n  
m : number of stages (stations) 
k : index of stages (stations) k 1, 2, … ,m  
mk : number of machines at the k stage  
l : index of the machine at the k stage  
 kl {1, 2, , m }= …  
h : index of the sequence of jobs on each 
 machine kh {1, 2, , h }= …  

4.2 Model Parameters  

ikp  : processing duration of the i-th job at the k 
stage  
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ijkSUP  : preparation time of the j-th job if the j-th 
job is immediately processed after the i-th 
job in the k stage. Given the similarity of 
machines at each stage, this parameter is 
independent of the machine index. 

M : a big positive number  

4.3 Decision Variables 

maxC  : maximum completion time of jobs  
ijklhX  : a binary variable; 1, if the j-th job is placed 

in the h position in the l machine imme-
diately after the i-th job in the k stage and 
the j-th and i-th jobs are placed in the h and 
h-1 positions, respectively; otherwise, 0.  

iklhR  : a binary variable; 1, if the i-th job is placed 
in the h position of the l machine at the k 
stage; otherwise, 0.  

ikS  : the start time of processing the i-th job at 
the k stage 

klhSB  : the start time of processing a job that is 
placed in the h position of the l machine at 
the k stage.  

4.4 Mathematical Model 

4.4.1 Objective Function  

maxminimize C   (1) 

4.4.2 Constraints  

k kh m
iklh i,kh 1 l 1

R 1
= =

= ∀∑ ∑  (2) 

n
iklh k,l,hi 1

R 1
=

≤ ∀∑  (3) 

ijklh iklh 1 iklh i j,k ,l,h 1X R R ;− ≠ >= × ∀  (4) 

ik i,k 1 i,k 1 k 1,S S P ; i− − >≥ + ∀  (5) 

( )ik iklh klh i,k ,l,hSB 1 R M SB ;≤ − × + ∀  (6) 

( )klh iklh ik i,k.l.hSB 1 R M S ;≤ − × + ∀  (7) 

n
klh klh 1 iklh 1i 1

n n
i,k ijklh ijki 1 j 1, j i

k ,l,h 1

SB SB R

P X SUP

− −=

= = ≠

>

= +

× + ×

∀

∑
∑ ∑  (8) 

k kh m
max ik iklh ik i,kh 1 l 1

C S R P ;
= =

≥ + × ∀∑ ∑  (9) 

ik i,kS 0;≥ ∀  (10) 

klh k,l,hSB 0;≥ ∀  (11) 

max i,kC 0;≥ ∀  (12) 

{ }ijklh i,k,l,hR 0,1 ;= ∀  (13) 

{ }ijklh i j,k ,l,h 1X 0,1 ; ≠ >= ∀  (14) 

4.5 Model Description  

In this model, Equation 1 is the objective function of 
the problem, which minimizes the maximum completion 
time of jobs. Constraints 2 and 3 guarantee that the opera-
tions of each job at each station are placed in a position of 
the sequence of jobs on the machine. Constraints 4 means 
that the X  the variable is equal to one if the j-th job is 
placed in the sequence of jobs on the l machine at the k 
stage following the i-th job and if the j-th and i-th jobs are 
placed in h and h-1 positions, respectively. Otherwise, it 
will be zero (in other words, the variable of X  will be 
equal to one when the variables of R 	and	R ,  are 
both equal to one). In addition, the mentioned constraints 
make the model nonlinear, and linearization of the model 
is addressed in the next stage. Constraints 5 tune the start 
time of processing each job on each workstation. In other 
words, a job will not be processed in a station until its 
processing is completed in the previous station. Con-
straints 6 and 7 are defined for tuning the start time of 
processing each job in each station and the start time of 
jobs on the machines. Constraints 8 is defined for tuning 
the start time of jobs on each machine of stations. These 
constraints are added to the model to determine the start 
time of jobs on the machine and indicate that the 
processing of the j-th job cannot be initiated until the 
processing of the previous job is not finished and the 
preparation time of the j-th task, which depends on the 
previous i-th job, is not passed. In addition, the equal sign 
guarantees the no-idle hypothesis (machine unemploy-
ment occurs when the start time of the current job is larg-
er than the finish time of the previous job plus the prepa-
ration time. However, using equality in the constraints 
will prevent idle time. Meanwhile, the sequence-
dependent preparation times between the jobs existing in 
the sequence will be calculated and applied). Constraints 
9 calculate the objective function, which is minimizing 
the completion time of jobs. Finally, constraints 10-14 
determine the nature of the decision variables of the model.  

5. Solution method 

5.1 Model linearization  

Constraints make the model nonlinear due to the ex-
istence of a multiplication sign between the decision va-
riables. Therefore, Constraints 4 are replaced by con-
straints 15 and 16 to develop a linear model (Meng and 
Pan, 2021). 
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ijklh ikl,h 1 jklh i j,k ,l,h 1X 1 R R ;− ≠ >+ ≥ + ∀  (15) 

ijklh ikl,h 1 jklh i j,k ,l,h 12 X R R ;− ≠ >× ≤ + ∀  (16) 

In the next section, the mathematical model is solved 
by LINGO software at small scales, followed by present-
ing GA to solve the problems and compare the solution 
time and quality of LINGO software to the GA which is 
described as follows.  

5.2 Proposed Genetic Algorithm 

From the 1960s onward, there has been an extensive 
development of modeling living creatures' behaviors to 
increase the robustness of the existing algorithms or 
create new algorithms for optimal problem-solving. In 
short, algorithms developed based on this type of thinking 
are recognized as evolutionary algorithms, one of the 
most popular of which is the GA. This nature-inspired 
algorithm is widely applied in various problems. The GA 
is an evolved search method based on natural selection 
and genetics, which uses a structured but random ap-
proach to exploit genetic data in pursuit of new search 
routes. GA is applied in a wide range of scientific fields. 
The algorithm is developed and used in the present study 
to optimize the proposed mathematical model.  

Since the problem presented in the research encom-
passes two sections of: A) allocating jobs to machines at 
each stage, and B) determining the sequence of jobs allo-
cated to each machine at each stage, the solution of the 
problem is displayed in the form of a matrix with K rows 
and N columns (K is the number of stages and N is the 
number of jobs). Each tow shows the sequence of jobs at 
each stage. The matrix has a value in the range of zero-
one. First, the numbers in each row are divided by the 
number of parallel machines available. For instance, if 
there are two parallel machines in the first stage, numbers 
in the range of 0-0.5 will be allocated to the first machine 
and numbers in the range of 0.5-1 will be assigned to the 
second machine. Similarly, if there are three parallel ma-
chines, numbers in the ranges of 0-0.333, 0.333-0.666, 0 
and 1, and 0.666-1 will be allocated to the first-third ma-
chines, respectively. The same process is carried out for a 
higher number of machines. Afterwards, the jobs assigned 
to each machine are arranged from small to large. This, in 
fact, shows the sequence of jobs on each machine. For 
instance, assume that N=5, K=2, and M=[23], meaning 
that there are two machines in the first stage and three 
machines in the second stage. The example solution 
strand of the problem is shown in Table 1.  

 

Table 1. Example solution with five jobs and two stages 

0.04 0.941 0.271 0.331 0.675 
0.295 0.491 0.694 0.225 0.844 

The order of jobs in the first stage is, as follows:  
1-3-4 
5-2 
In the second stage, the order of jobs is, as follows:  
4-1 
2 
3-5 
The fit function considered for each chromosome of 

each generation is equal to the value of the objective 
function or Cmax, and the initial population is generated 
by producing a uniform random number between 0 and 1. 
Some of the most common parent selection methods are 
the Roulette wheel, the random method, the ranking me-
thod, and the competitive selection method. In this article, 
the parent selection process is completely random for the 
crossover due to the nature of GA, which is based on a 
random search. There are several methods for the cros-
sover operator in chromosomes that use the numbers zero 
and one and integers. In this regard, some of the conven-
tional methods are listed below:  

One-point crossover, two-point crossover, multipoint 
crossover, uniform crossover, three-parent crossover, PPX 
crossover, and sorted crossover. Other crossover tech-
niques are used in chromosomes in which real numbers 
are used for coding. In this regard, one of these methods 
is the intermediate propagation method, in which the val-
ue of the child variable is a linear combination of parent 
variables (Equation 17). 

0
1 1 1 2 2
0
2 1 2 2 1

x λ x λ x

x λ x λ x

= +

= +
 (17) 

where X2 and X1 are parent variables, X’2 and X1 are 
child variables and λ2, λ1  are linear coefficients.  

1 2λ , λ 0≥  
Crossover operations are often implemented on a 

percentage of the population. A coefficient of 0.8 or 80% 
is considered for the problem under study. In this article, 
the crossover is carried out in intermediate propagation or 
linear combination form. First, a parameter named Landa 
is randomly generated in the range of [-0.2 1.2]. After-
wards, the linear combination of two parents is calculated 
and introduced as children. It is notable that if the cell’s 
value is higher than one, it will be changed to one, and if 
it is less than zero, it will be changed to zero. In the prob-
lem of the present study, 20% of chromosomes are 
changed by the mutation operator. This value is obtained 
due to choosing an 80% coefficient for the crossover op-
erator. To carry out the mutation process, we select 20% 
of the cells on each chromosome (response strand) and 
change their value randomly. If 20% of the number of 
cells is not an integer, it will be rounded to the nearest 
multiple of five. The mechanism of survival selection is 
such that children produced better than the parents are 


