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Abstract: Based on data from The Global Burden of Disease Study in 2016, dental and oral health
problems, especially dental caries, are a disease experienced by almost half of the world’s population
(3.58 billion people). One of the main causes of dental caries is the pathogenesis of Streptococcus
mutans. Prevention can be achieved by controlling S. mutans using an antibacterial agent. The most
commonly used antibacterial for the treatment of dental caries is chlorhexidine. However, long-term
use of chlorhexidine has been reported to cause resistance and some side effects. Therefore, the
discovery of a natural antibacterial agent is an urgent need. A natural antibacterial agent that can
be used are herbal medicines derived from medicinal plants. Piper crocatum Ruiz and Pav has the
potential to be used as a natural antibacterial agent for treating dental and oral health problems.
Several studies reported that the leaves of P. crocatum Ruiz and Pav contain secondary metabolites
such as essential oils, flavonoids, alkaloids, terpenoids, tannins, and phenolic compounds that are
active against S. mutans. This review summarizes some information about P. crocatum Ruiz and Pav,
various isolation methods, bioactivity, S. mutans bacteria that cause dental caries, biofilm formation
mechanism, antibacterial properties, and the antibacterial mechanism of secondary metabolites in
P. crocatum Ruiz and Pav.

Keywords: red betel leaf; Piper crocatum Ruiz and Pav; antibacterial; Streptococcus mutans; phytochemical
profiling

1. Introduction

The oral cavity is a place of growth for more than 700 species of microorganisms, which
ultimately has many impacts on the health of the teeth and oral cavity. One of the health
problems experienced globally is oral infectious diseases such as dental caries [1–3]. In 2017,
the prevalence of dental caries in permanent teeth per 100,000 population in each country
reached 20% to more than 50% [4]. The cause is the synergistic interaction of bacteria such
as Streptococcus sanguinis and S. mutans to form a biofilm on the tooth surface [5–9]. The
high prevalence of dental caries and the weakness of the strategies used today indicate an
urgent need to identify alternative treatment options that are more effective and efficient,
one of which is the use of medicinal plants [10].

Some studies reported that red betel leaf has the potential to be used as a natural
antibacterial agent in treating dental and oral health problems. Red betel leaf contains sec-
ondary metabolites such as essential oils, flavonoids, alkaloids, and phenolic compounds
that actively inhibit S. mutans [11,12]. Based on this, this review focuses on the antibacterial
activity found in red betel leaf (P. crocatum Ruiz and Pav) which has been studied exten-
sively [13]. This review will also discuss the relationship between antibacterial activity and
the structure of several compounds contained in red betel leaf extract.
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2. Gram-Positive and Negative Bacteria Cause Dental Caries
2.1. Gram-Positive Bacteria
2.1.1. Streptococcus mutans

S. mutans is a Gram-positive bacterium that is considered to be the microorganism
that most often plays a role in tooth decay [14]. These bacteria are able to organize them-
selves in the bacterial community through cell–cell interactions and connections with other
components present in the medium such as polysaccharides, proteins, and DNA to form
biofilms [15,16]. Biofilm is a structured and organized community of microbial cells in a
dynamic environment, enclosed and embedded in a three-dimensional (3D) extracellular
matrix [17–19]. The cariogenic biofilm matrix formed by S. mutans is rich in exopolysaccha-
rides and contains extracellular DNA (eDNA) and lipoteichoic acid (LTA) [20–23]. Microbial
species are found in oral biofilms such as Candida albicans, Candida glabrata, Enterococcus
faecalis, S. mutans, Veillonella dispar, Fusobacterium nucleatum, and many others [24].

One of the diseases caused by S. mutans is dental caries. There are several factors that
cause dental caries to get worse including sugar, saliva, and also putrefactive bacteria [25–27].
In addition, the growth of bacteria in the mouth and forming biofilms is caused by several
factors, namely saliva which plays a role in modulating the plaque layer on the teeth,
the temperature in the environment around the mouth in the range of 35–36 ◦C, and
pH 6.75–7.25 [28,29]. The mechanism of biofilm formation on teeth is followed by five
stages, namely initial adhesion which produces extracellular polymeric substances, initial
attachment where cell division occurs, formation of young biofilms, mature biofilms, and
dispersed biofilms which cause cell autolysis [30] (Figure 1).
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Figure 1. (A) Co-aggregation between S. mutans and filaments in developing dental biofilm;
(B) typical corncob formation [30].

The pathogenesis of S. mutans begins after consuming something containing sugar,
especially sucrose, a sticky glycoprotein (a combination of protein and carbohydrate
molecules) that is retained on the teeth to initiate plaque formation on the teeth [31,32]. At
the same time, millions of bacteria, including S. mutans, also survive on the glycoprotein.
S. mutans has an enzyme called glucosyl transferase on its surface which is involved in
glycolysis [25,33,34]. Glycolysis is the breaking down of glucose in sucrose that is carried
out to obtain energy.

The glucosyltransferase enzyme continues to work, namely, to add more glucose
molecules to form dextran which has a structure very similar to amylase in starch. Dextran
together with other bacteria adheres tightly to the tooth enamel and subsequently forms
plaque on the teeth [35,36]. In addition, glycolysis under anaerobic conditions also produces
lactic acid. This lactic acid causes a decrease in pH to a certain extent so that it can destroy
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hydroxyapatite in the tooth enamel and cause the formation of a cavity or hole in the
tooth [37,38] (Figure 2).
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2.1.2. Streptococcus sanguinis

Streptococcus sanguinis is a type of Gram-positive bacteria that does not have spores
and is a facultative anaerobe. Cell division in S. sanguinis occurs along a single axis and
produces chains or pairs of cocci. The genome sequence of S. sanguinis SK36 isolated
from dental plaque in humans has a circular DNA molecule consisting of 2,388,435 base
pairs, with 2274 predicted protein codes. In tRNA, there are 61 genes that are predicted
to be able to produce 20 amino acids and 50 carbohydrate transporters, including the
phosphotransferase enzyme which functions to transport glucose, fructose, mannose,
cellobiose, glucoside, lactose, trehalose, galactitiol, and maltose. S. sanguinis is able to
utilize various carbohydrate sources to survive [39].

Oral biofilm formation begins with the attachment of S. sanguinis and other pioneering
colonists to a macromolecular complex formed on the saliva-coated tooth surface [22,40–42].
S. sanguinis was the first bacterium to bind to the biofilm and a species that plays an
important role in the oral biofilm ecosystem [43–46]. However, these bacteria also have a
positive role, namely producing H2O2 as a means to produce excess oxygen and working
as a non-specific antimicrobial agent that can trigger the growth of S. mutans and other
anaerobic periodontal pathogens [47–49].

The negatively charged residue and electrostatic interactions with hydrophilic regions
in salivary proteins facilitate the attachment of bacteria to the tooth surface to form the
Acquired Enamel Pellicle (AEP). Although S. sanguinis can directly adhere to saliva-free
hydroxyapatite, the major mineral found in tooth enamel, the initial attachment process is
most likely driven by the interaction of the streptococcal surface with salivary components.
Binding to salivary proteins is mediated through protein–protein or protein–carbohydrate
interactions with receptors exposed on the bacterial surface. Amylase is the most abundant
salivary protein and is present both in AEP and in dental plaque. S. sanguinis specifically
binds to amylase via long filamentous pili [50,51].

2.2. Gram-Negative Bacteria
Veillonella parvula

Veillonella parvula is an anaerobic Gram-negative coccus that is part of the normal flora
found in the human mouth and digestive tract [52]. Human oral Veillonella species include
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V. parvula, V. dispar, V. atypica, V. denticariosi, V. rogosae, V. tobetsuensis, V. infantium, and V.
nakazawae [53–55]. Lactate and malate are the preferred carbon sources by Veillonellae spp.
These carbon sources will be metabolized into propionate, acetate, CO2, and H2 [56,57].
Pyruvate, fumarate, and oxaloacetate can also be metabolized, but citrate, iso-citrate, and
malonate are not. Succinate catabolism has been reported to have not resulted in suboptimal
growth [58]. The balanced stoichiometry of lactate catabolism is (Equation (1)) [59]:

8 Lactate→ 5 Propionate + 3 Acetate + 3 CO2 + H2 (1)

Evidence that Veillonellae spp. acts as a linking species in biofilm development has
been demonstrated in both in vivo and in vitro studies. Human epidemiological studies
have shown Veillonellae spp. to be very abundant in both supra and sub-gingival plaques as
well as on the tongue and in saliva [60–64]. Veillonella spp. (especially V. parvula) was found
to be associated with dental caries in children [58,65]. Besides that, it was also found in
adults. V. parvula was also one of the most abundant and prevalent bacteria in all samples
of both healthy and carious teeth. However the abundance of V. parvula in carious tooth
samples appears to be higher [66]. The physiological relationship between Veillonellae (as
lactate users) and S. mutans (as lactate producers) has prompted many clinical studies
on the relationship of Veillonellae with caries. Research conducted by Aas et al. [67] also
demonstrated the association of the genera Veillonella with caries development. Belstrom
et al. reported that Streptococcus spp. and Veillonella spp. were the most dominant genera
among all saliva samples from 292 participants with mild to moderate dental caries [68].

It can be argued that the observed association between cariogenic bacteria and Veil-
lonella stems from the metabolic need to produce organic acids which are indeed found
in higher concentrations in active caries. Therefore, the presence of Veillonellae can be an
indication of, and prediction of, a local decrease in pH. Bradshaw and Marsh reported
that the number and proportion of S. mutans and Lactobacillus spp. increases as the pH
decreases, especially below low pH [65]. Similarly in another clinical study, Gross et al.
found the proportion of Veillonellae spp. increased commensurate with the proportion of
Streptococcus spp. [69]. In other words, Veillonellae can be a risk factor for caries initiation,
whereas S. mutans are a risk factor for caries development.

3. Antibacterial
3.1. Definition

An antibacterial is a substance that can inhibit the growth of bacteria and will kill
pathogenic bacteria [70]. Antibacterial substances are divided into two types, namely
bacteriostatic which suppresses bacterial growth and bactericidal which can kill bacte-
ria [71]. Bacteria have evolved a lot to be able to survive in various environments and can
develop resistance to various antibacterial reagents quickly [72]. Inhibition of bacteria can
be through several synthesis pathways in bacteria, namely the bacterial cell wall biogenesis
pathway, DNA replication pathway, transcription pathway, and protein biosynthesis path-
way [73]. The cell wall structure consists of peptidoglycan which provides a mechanical
effect on bacteria to maintain morphology. The peptidoglycan layer is formed from N-acetyl
glucosamine and N-acetylmuramic acid linked by 1,4-glycosidic bonds [74].

3.2. Antibacterial Mechanism of Secondary Metabolic Compounds

Several secondary metabolites that are isolated from plants can be natural antibacterial
agents. Each compound has their own antibacterial mechanism in inhibiting bacteria. Their
mechanism will be explained in the following:

3.2.1. Phenol

The mechanism of phenol as an antibacterial agent acts as a toxin in the protoplasm,
damaging and penetrating the wall, causing the function of selective permeability, active
transport, and protein composition control, so that bacterial cells become deformed and
lysed [75–77].
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3.2.2. Flavonoids

Flavonoids work to inhibit bacterial growth by inhibiting nucleic acid synthesis,
changing cytoplasmic membrane function, inhibiting energy metabolism, reducing cell
attachment and biofilm formation, inhibiting porin in cell membranes, and disrupting
permeability of cell walls and membranes to cause bacterial cell lysis [38,78–81]. In addi-
tion, flavonoids also act as inhibitors of the FabZ enzyme and inhibit the production of
fimbriae [82].

3.2.3. Saponins

Meanwhile, the saponins themselves work as antibacterial agents by disrupting the
stability of the bacterial cell membrane, causing bacterial cell lysis [75,83–85].

3.2.4. Terpenoids

Terpenoids work as antibacterials by disrupting the function of cell membranes to
cause damage to bacterial cell membranes, interfering with glucosyltransferase activity,
inactivating thiol-containing enzymes and causing bacterial death [86–97].

3.2.5. Alkaloids

Alkaloids inhibit growth and kill bacteria by interfering with the permeability of cell
walls and membranes, inhibiting of nucleic acid and protein synthesis, and inhibiting
bacterial cell metabolism to cause lysis. Moreover, alkaloids can also act as inhibitors in the
protein biosynthesis process in bacterial cells [98–100].

3.2.6. Tannins

Tannins work by coagulating bacterial protoplasm, precipitating proteins, and binding
proteins to inhibit the formation of bacterial cell walls [101–103] (Figure 3).
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3.3. Antibacterial Mechanism with MurA Enzyme

In addition, the antibacterial mechanism can be carried out by inhibiting the ac-
tion of the MurA enzyme that catalyzes the first step of bacterial cell wall biosynthesis.
Therefore, the inhibition of the activity of oral pathogenic bacteria can be undertaken by
inhibiting the enzyme MurA [104]. In cell wall peptidoglycan biosynthesis, the enzyme
MurA involves the transfer of the enolpyruvate group from phosphoenolpyruvate (PEP)
to UDP-N-acetylglucosamine (UNAG) to form UDP-N-acetylglucosamine enolpyruvate
(UNAGEP) [90,91].

Based on the performance of fosfomycin, the inhibition of the MurA enzyme is com-
petitive. Antibiotics act as PEP analogues and form covalent bonds with the active cysteine
residue of the enzyme as shown in the figure below. Antibiotics interact with enzymes
and UDP-N-acetylglucosamine and then form hydrogen bonds with different segments of
the polypeptide chain. In addition, hydrogen bonds can be formed between the hydroxyl
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group of phosphomycin and the C-3 hydroxyl of the sugar ring UDP-N-acetylglucosamine
and between one of its phosphonate oxygen atoms and the nitrogen amide of UDP-N-
acetylglucosamine [105] (Figure 4).
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3.4. Commonly Used Dental Caries Antibiotics

To control caries mediated by pathogenic bacteria, dental and oral hygiene products
are widely used which consist of chemical compounds, such as fluoride, chlorhexidine,
triclosan, cetylpyridinium chloride, and chlorophyll.

3.4.1. Fluoride

Fluoride is the most effective caries prevention agent. Since the 1940s, it has been
added to water supplies and oral care products, such as toothpaste, mouthwash, and
dental floss [107]. In fact, the use of oral hygiene products containing fluoride reduced
the prevalence of caries by 24–26% in permanent teeth. Water fluoridation in the range
of 0.50–1.00 mg/L−1 is a cost-effective method for moderating caries potential [108]. In
addition, the combination of nicomethanol hydrofluoride with siliglycol further enhances
fluoride uptake by teeth and controls or inhibits dental biofilm development and strength-
ens tooth structure [109]. However, the use of fluoride for oral health also causes side
effects, such as the emergence of fluoride-resistant strains [110,111]

3.4.2. AIK(SO4)2

AIK(SO4)2 was found to be able to reduce fissure caries, both smooth surface and
sulcus caries. The mechanism of dental caries treatment of alum may be almost the same as
the mechanism of dental caries treatment using fluoride [112].

3.4.3. Chlorhexidine (CHX)

Dental and oral hygiene products consist of another chemical compound, namely
chlorhexidine (CHX). Chlorhexidine is a symmetric bis-biguanide agent consisting of two
chloroguanide chains linked by a central hexamethylene chain and has diverse medical
applications as a surface disinfectant and as an antiseptic for topical application. Chlorhexi-
dine carryes two positive charges at physiological pH which can interact electrostatically
with negatively charged phospholipids (CHX) and has been used to control dental caries
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caused by acid-tolerant bacteria such as S. mutans since the 1970s [113]. However, the use of
chlorhexidine also causes certain disadvantages with long-term use such as tooth staining
and taste changes [114]. It is also believed that the continued and increasing use of chlorhex-
idine can lead to the emergence of new strains of mycobacteria with lower susceptibility

High prevalence of dental caries and the weakness of the strategies used today indicate
an urgent need to identify alternative treatment options that are more effective, efficient, and
non-toxic, one of which is by utilizing herbal medicines derived from medicinal plants [115].
In recent decades, research focus has also shifted to herbal medicines due to increasing
bacterial resistance and side effects of antimicrobial agents. Extracts of plant origin can
enhance antibiotic efficacy when used in combination against bacterial pathogens [10]. In
addition, the use of medicinal plants or natural products is indeed a safe approach for rapid
clinical translation because they are generally recognized as safe by the United States Food
and Drug Administration.

4. Piper crocatum Ruiz and Pav

Based on some research literature, it has been reported that red betel leaf has the
potential to be used as a natural antibacterial agent in treating dental and oral health
problems. Red betel leaf (P. crocatum Ruiz and Pav) is a plant that grows in the tropics
and was previously known as an ornamental plant, but was later used as a medicinal
plant [116]. P. crocatum Ruiz and Pav is a natural ingredient that has the potential to treat
dental caries and the leaf contains secondary metabolites such as essential oils, flavonoids,
alkaloids, and phenolic compounds which may be active against S. mutans that plays a
role in caries formation. The use of red P. crocatum Ruiz and Pav is traditionally useful in
curing diseases such as canker sores and toothache. The red betel leaf decoction which
is an antiseptic can act as a mouthwash, preventing bad breath. From chromatography it
is known that P. crocatum Ruiz and Pav leaf contains flavonoid compounds, polyphenol
compounds, tannins, and essential oils, where flavonoids are known to be inhibitors of the
growth of S. mutans [11,50].

4.1. Isolation of Secondary Metabolites of Piper crocatum Ruiz and Pav

Several studies reported the isolation of P. crocatum Ruiz and Pav by many methods.
Li et al., 2019 isolated 2.60 kg of dried red betel leaf samples, then extracted by reflux
method using methanolic solvent (5 L × 3 times). The results of the isolation of P. crocatum
Ruiz and Pav leaves revealed 23 compounds including 15 phenolic compounds (1–15), two
monoterpenes (16 and 17), three sesquiterpene compounds (19–21), phenolic amide glyco-
sides (22), neolignans (23), and the flavonoid compound C-glycoside (24). The structure
of the compounds obtained was identified through spectroscopic methods and compared
with the literature. Seven compounds (7, 11, 13, 14, 17, 20, and 24) of the species P. crocatum
Ruiz and Pav and 17 others (1–6, 8–10, 12, 15–16, 18–19, and 21–23) from the genus Piper
and the family Piperaceae were isolated and reported for the first time [117] (Figure 5).

Another isolation method was carried out by Emrizal et al., 2014 for P. crocatum Ruiz
and Pav, as much as 0.84 kg were extracted at room temperature with methanolic solvent
to obtain a crude methanolic extract of 253.27 g (30.11%) after which the extract was evapo-
rated, and they proceeded to separate the components of the compound. The results of the
isolation obtained two compounds from the P. crocatum Ruiz and Pav plant which were
then identified based on literature data and spectroscopic analysis. It was concluded that
the two compounds were β-sitosterol and 2-(5′,6′-dimethoxy-3′,4′-methylenedioxyphenyl)-
6-(3′′,4′′,5-trimethoxyphenyl)-dioxabiclo [3,3,0] octane. In addition, the two compounds
were also reported to have antitumor activity with an IC50 value of 2.04; 1.34, 2.08, and
27.40 g/mL in the fractions of n-hexane, ethyl acetate, buthanolic, and methanolic extract,
respectively [118] (Figure 6).
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Figure 5. Compounds obtained from the methanol extract of red betel leaf. (1) (8R)-
8-(4-hydroxy-3,5-dimethoxy)-propane-8-ol-4-O-β-D-glucopyranoside; (2) 4-Allyl-2,6-dimethoxy-
3-hydroxy-1-D-glucopyranoside; (3) 3-[(1E)-3-hydroxy-1-propen-1-yl]-2,5-dimethoxyphenyl-D-
glucopyranoside; (4) Cimidahurinin; (5) Erigeside II; (6) Syringe; (7) β-phenylethyl-β-D-glucoside;
(8) Methylsalicylate-2-O-β-D-glucopyranoside; (9) Icariside D1; (10) 4-Hydroxybenzoic acid-
D-glucosylester; (11) Benzyl-β-D-glucoside; (12) Phenylmethyl-6-O-α-L-arabinofuranosyl-β-D-
glucopyranoside; (13) Hydroxytyrosol-1glucopyranoside (14) Gentisic acid; (15) Catechaldehyde;
(16) (S)-Menthiafolic acid; (17) Ioliolide; (18) 5β,6β-dihydroxy-3α-(β-D-glucopyranosyloxy)-
7E-Megastigmen-9-one; (19) (3E)-4-[(1S,2S,4S)-4-(β-D-glucopyranosyloxy)-1,2-dihydroxy-2,6,6-
tri-methylcyclohexyl]3-buten-2-one; (20) (6S,9S)-roseoside; (21) Cuneataside E (22) N-trans-
feruloyltyramine-4′-O-β-D-glucopyranoside; (23) Syringaresinol-β-D-glucoside; and (24) Vitexin
2”-O-rhamnoside.

Arbain et al., 2018 isolated a 1.10 kg sample of P. crocatum Ruiz and Pav by using the
maceration extraction method twice with methanolic solvent (5 L) for 48 h. Two new bicyclo
[3.2.1] octanoid neolignans of the guianine type, crocatin A and crocatin B, together with
the known compounds pachypodol and 1-triacontanol isolated from Indonesian P. crocatum
Ruiz and Pav leaf. Its structure and configuration were determined by 1D- and 2D-NMR,
MS spectroscopy, and single-crystal X-ray diffraction analysis [119] (Figure 7).
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In a study conducted by Chai et al. (2021), 2.60 kg of dried leaves of P. crocatum
Ruiz and Pav were isolated which were then extracted using the reflux method using
methanol (5 L × 3 times) as a solvent. The isolation results reported that four bicyclo [3.2.1]
octanoid neolignans were isolated from the methanolic extract of P. crocatum Ruiz and Pav.
Neolignans were identified as pipcroside A, pipcroside B, pipcroside C, and crocatin B. In
addition, this study by Chai et al., 2021 also provides the basis for further exploration of
P. crocatum Ruiz and Pav and bicyclo [3.2.1] octanoid neolignans from the Piper plant as a
new source of natural antineoplastic agents [120] (Figure 8).

4.2. Bioactivity of Piper crocatum Ruiz and Pav

The Piperaceae family is one type of plant that is often found in the surrounding
environment and several types of plants in that family are classified as dicotyledonous
plants. One of them that is often used by the community as a traditional medicinal plant is
the Piper genus. It has more than 700 species spread throughout the world and commercial,
economic, and medicinal importance. Many plant species of this genus have high potential
for local and industrial uses, as well as applications in botanical pharmacy, pharmacognosy,
and traditional medicine. The efficacy of the drug basically comes from several secondary
metabolite compounds contained in the plant.

Secondary metabolites of the Piper genus, in addition to their unique structure, are
also reported to have potential as bioactive compounds. Tests for the bioactivity of this
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genus have been carried out on both extracts and pure compounds. The isolation results
support its use in traditional medicine (Table 1).
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Table 1. Bioactivity of isolated Piper genus.

No. Species Secondary
Metabolites Plant Parts Bioactivity References

1 P. betle Phenylpropanoid Leaf Antioxidant Atiya et al., 2018 [121]

2 P. terminaliflorum tseng Furfuran Lignan All parts of plant Anticancer T. Liu et al., 2018 [122]

3 P. chimonantifolium Flavonoids
Steroids Leaf Antifungal Lago et al., 2012 [123]

4 P. montealegreanum Monoterpens
Seskuiterpens Twig Da S. Alves et al., 2011

[124]

5 P. hispidum Chalcones,
Flavanone Leaf Antileishmanial Ruiz et al., 2011 [125]

6 P. maingayi Amida Twig Antibacterial Hashim et al., 2019 [126]

7 P. officinarum
Phenylpropanoid

Alkaloids
Triterpene

Twig Antioxidant Salleh et al., 2014 [127]

8 P. taiwanense Amida Aerial Antioxidant Chen et al., 2017 [128]

9 P. sarmentosum Flavonoids Leaf Antioxidant Ugusman et al., 2011 [129]

10 P. solmsianum C. Flavonoids Twig Antifungal De Campos et al., 2005
[130]

11 P. betle L. Terpenoid Leaf Antibacterial Batubara et al., 2011 [131]

12 P. betle L. Phenolic Leaf Antibacterial Kurnia et al., 2020 [132]

13 P. ningrum Alkaloid-piperidine Fruit Anticancer Reshmi et al., 2010 [133]

Like plants from other Piper genera, P. crocatum Ruiz and Pav also has some bioactivity,
both from the level of extract, fraction and isolation results, and several instances of
bioactivity of red betel have been reported. In the table below are some studies of isolation
of P. crocatum Ruiz and Pav with various kinds of bioactivity of each (Table 2).
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Table 2. Bioactivity of isolated P. crocatum Ruiz and Pav leaves.

No. Secondary
Metabolites Plant Parts Bioactivity References

1
Flavonoids
Terpenoids

Steroids
Leaf Antitumor Emrizal et al., 2014 [118]

2

2 flavonoids
2 monoterpenes
3 seskuiterpenes

17 Glucoside

Leaf Anti-inflammatory Li et al., 2019 [117]

3 12 Phenolic Leaf Hypoallergenic Li et al., 2019 [134]

4 Bicyclo[3,2,1]Octanoid
Neolignane Leaf Pyruvate dehydrogenase

inhibitors Chai et al., 2021 [120]

5 Essential Oil Leaf Antibacterial Rizkita et al., 2017 [13]

4.3. Antibacterial Activity of Red Betel Extract

One of the examples of bioactivity of P. crocatum Ruiz and Pav, which is the topic of
this review, is antibacterial activity. Especially, the antibacterial activity of red betel against
the bacteria S. mutans, S. sangguinis, V. parvula, and other bacteria found in the oral cavity
that cause dental and oral health problems, one of which is dental caries. Therefore, the
potential of red betel as an antibacterial agent can be understood by looking at several
studies that have been reported. The table below shows data from previous research reports
that reported the antibacterial ability of red betel leaf extract (Table 3).

Table 3. Antibacterial activity methods of red betel extract (P. crocatum Ruiz and Pav).

No. Compounds Types of Bacteria Methods References

1
Flavonol
Chalcone

Anthocyanins
S. mutans

The Kirby–Bauer method of the disc
diffusion test combined with UV

irradiating treatment was used. The
results showed the diameter of the

inhibition zone (15.00 ± 0.05) mm for
10 watt and (15.96 ± 0.05) mm for

15 watt.

Dyah Astuti et al., 2020
[135]

2
Alkaloids
Steroids
Tannins

B. subtilis
P. aeuruginosa

Antibacterial activity was tested using
the well method. Inhibited the growth
of B. substilis and P. aeruginosa bacteria

but the activity was weak, the inhibition
zone was < 5 mm.

Puspita et al., 2019
[136]

3

Flavonoid
Saponin
Tannins
Phenolic

Staphylococcus
epidermidis

Bacterial test was carried out using the
well method, extract concentrations of

50 and 100% could inhibit the growth of
S. epidermidis.

Januarti et al., 2019
[137]

4 Tannins Staphylococcus aureus

Tests using the well method can inhibit
S. aureus bacteria. Maceration extraction
technique to get the average inhibition

zone of 12.30 mm.

Soleha, 2018 [138]

5

Flavonoids
Alkaloids
Tannins

Essential oil

Porphyromonas
gingivalis

S. viridians

The antibacterial test was carried out
using the well method, the inhibition

zone on P. gingivalis was 10.34 mm
while S. viridians was 8.42 mm.

Pujiastuti et al., 2015
[139]

In research conducted by Rizkita et al. (2017), the research procedure includes four
stages, namely plant determination, betel leaf oil refining, identification of betel oil com-
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ponents, and betel oil activity test, then the two oils are compared. Further component
identification was carried out by mass spectrometry. The results of mass spectrometry will
obtain the mass spectrum of each peak detected on the GC chromatogram. The mass spectra
analysis was based on the value of Similarity Index (SI), base peak, and the fractional trend
of the mass spectra compared to the library mass spectra, namely WILEY229.LIB. It was
reported that the isolation results from P. betle L. and P. crocatum Ruiz and Pav contain
essential oils which consist of five main active compounds that have antibacterial properties.
The test was carried out by applying the disc method. The media used was Mueller Hinton
Agar media because in this medium S. mutants bacteria lived optimally. The agar media
that had been planted with the test bacteria were filled with samples of green betel oil and
red betel oil with concentration variations (100, 75, 50, and 25%), propylene glycol solvent
as a negative control, and amoxicillin as a positive control (Figure 9) [13].
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Figure 9. Structure of compounds of isolated red betel leaf oil. (35) Camphene and (36) Myrcene [13].

These compounds are terpenoid group compounds including camphene, sabinene, car-
iophilene, humulena, and germakron in green betel while the terpenoid compounds in red
betel leaf include sabinene and mirsen. The antibacterial activity test of these compounds
proved that there was an inhibition of the growth of S. mutans bacteria. Antibacterial
compounds are thought to be able to inhibit the growth of Gram-positive bacteria by
penetrating the cell wall, the cell wall of Gram-positive bacteria has a simple composition
consisting of 60–100% peptidoglycan, which is made of N-acetyl glucosamine and N-acetyl
muramate. The simple arrangement of the cell wall and the absence of an outer membrane
causes antibacterial compounds to penetrate the cell wall and interfere with the cell wall
biosynthesis process.

Sesquiterpene compounds have hydrophobic properties that cause disruption of
the integrity of bacterial cells by reducing intracellular ATP reserves, lowering cell pH,
being absorbed and penetrated into bacterial cells, then bacteria will experience precip-
itation and protein denaturation, and will lyse bacterial cell membranes. The difference
in the concentration of the content contained in green betel leaf and red betel leaf con-
tains 1.00–4.20% (w/v) essential oil yield, chavicol 7.20–16.70%, cavibetol 2.70–6.70%, and
eugenol 26.80–42.50%. Meanwhile, the yield of red betel leaf was 0.73 (w/v), chavicol
5.10–8.20%, and eugenol 26.10–42.50%.

5. Conclusions

Medicinal plants of P. crocatum Ruiz and Pav have a significant role in applications
of ethno-medicine. They contain secondary metabolites that have several examples of
bioactivity, such as antioxidant, antimicrobial, antibacterial, antifungal, anti-inflammatory,
and others. The bioactivity is influenced by the structure and functional groups of each
secondary metabolite compound contained therein. Based on several research reports, it
can be seen that P. crocatum Ruiz and Pav has considerable potential as an antibacterial
agent in the treatment of oral health problems such as dental caries with several different
methods. Secondary metabolites contained in P. crocatum Ruiz and Pav have their own
mechanism to inhibit bacteria. This scientific finding is useful information for further drug
research and development to find new potential antimicrobial agents.
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Abstract: Based on data from The Global Burden of Disease Study in 2016, dental and oral health 12 

problems, especially dental caries, are a disease experienced by almost half of the world's popula- 13 

tion (3.58 billion people). One of the main causes of dental caries is the pathogenesis of Streptococcus 14 

mutans. So that prevention can be done by controlling S. mutans using an antibacterial agent. The 15 

most commonly used antibacterial for the treatment of dental caries is chlorhexidine. However, 16 

long-term use of chlorhexidine has been reported to cause resistance and some side effects. So that 17 

the discovery of a natural antibacterial agent is an urgent need, a natural antibacterial agent that 18 

can be used is to use herbal medicines derived from medicinal plants. Piper crocatum Ruiz & Pav has 19 

the potential to be used as a natural antibacterial agent, one of which is in treating dental and oral 20 

health problems. Several studies reported that the leaves of P. crocatum Ruiz & Pav contain second- 21 

ary metabolites such as essential oils, flavonoids, alkaloids, terpenoids, tannins and phenolic com- 22 

pounds that are active against S. mutans. This review summarizes some information about P. croca- 23 

tum Ruiz & Pav, various isolation methods, bioactivity, S. mutans bacteria that causes dental caries, 24 

biofilm formation mechanism, antibacterial properties, antibacterial mechanism of secondary me- 25 

tabolites in P. crocatum Ruiz & Pav. 26 

Keywords:  red betel leaf, Piper crocatum Ruiz & Pav, antibacterial, Streptococcus mutans, phyto- 27 

chemical profiling 28 

 29 

1. Introduction 30 

The oral cavity is a growing place for more than 700 species of microorganisms, this 31 

ultimately has a lot of impacts on the health of the teeth and oral cavity. One of the health 32 

problems experienced globally is oral infectious diseases such as dental caries [1-3]. In 33 

2017, the prevalence of dental caries in permanent teeth per 100,000 population in each 34 

country reached 20% to more than 50% [4]. The cause is the synergistic interaction of bac- 35 

teria such as Streptococcus sanguinis and S. mutans to form a biofilm on the tooth surface 36 

[5-9]. The high prevalence of dental caries and the weakness of the strategies used today 37 

indicate an urgent need to identify alternative treatment options that are more effective 38 

and efficient, one of which is the use of medicinal plants [10]. 39 

Some studies reported that red betel leaf has the potential to be used as a natural 40 

antibacterial agent in treating dental and oral health problems. Red betel leaf contains 41 

secondary metabolites such as essential oils, flavonoids, alkaloids and phenolic com- 42 

pounds that actively inhibit S. mutans [11,12]. Based on this, this review focuses on the 43 

antibacterial activity found in red betel leaf (P. crocatum Ruiz & Pav) which has been 44 
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studied extensively [13]. This review will also discuss the relationship between 45 

antibacterial activity and the structure of several compounds contained in red betel leaf 46 

extract. 47 

2. Gram-Positive and Negative Bacteria Cause Dental Caries 48 

2.1. Gram-Positive Bacteria  49 

2.1.1. Streptococcus mutans 50 

S. mutans is a Gram-positive bacterium that is considered to be the microorganism 51 

that most often plays a role in tooth decay [14]. These bacteria are able to organize them- 52 

selves in the bacterial community through cell-cell interactions and connections with 53 

other components present in the medium such as polysaccharides, proteins and DNA to 54 

form biofilms [15,16]. Biofilm is a structured and organized community of microbial cells 55 

in a dynamic environment, enclosed and embedded in a three-dimensional (3D) extracel- 56 

lular matrix [17-19]. The cariogenic biofilm matrix formed by S. mutans is rich in exopoly- 57 

saccharides and contains extracellular DNA (eDNA) and lipoteichoic acid (LTA) [20-23]. 58 

Microbial species found in oral biofilms such as Candida albicans, Candida glabrata, Entero- 59 

coccus faecalis, S. mutans, Veillonella dispar and Fusobacterium nucleatum and many others 60 

[24]. 61 

One of the diseases caused by S. mutans is dental caries. There are several things that 62 

cause dental caries to get worse including sugar, saliva, and also putrefactive bacteria [25- 63 

27]. In addition, the growth of bacteria in the mouth and forming biofilms is caused by 64 

several factors, namely saliva which plays a role in modulating the plaque layer on the 65 

teeth, the temperature in the environment around the mouth is in the range of 35-36°C 66 

and pH 6.75-7.25 [28,29]. The mechanism of biofilm formation on teeth is followed by five 67 

stages, namely initial adhesion which produces extracellular polymeric substances, initial 68 

attachment where cell division occurs, formation of young biofilms, mature biofilms, and 69 

dispersed which causes cell autolysis [30]. (Figure 1) 70 

 71 

  
(a) (b) 

Figure 1. (a) Co-aggregation between S. mutans and filaments in developing dental biofilm; (b) Typ- 72 
ical corncob formation. 73 

The pathogenesis of S. mutans begins after consuming something containing sugar, 74 

especially sucrose, a sticky glycoprotein (a combination of protein and carbohydrate mol- 75 

ecules) that is retained on the teeth to initiate plaque formation on the teeth [31,32]. At the 76 

same time, millions of bacteria, including S. mutans, also survive on the glycoprotein. S. 77 

mutans has an enzyme called glucosyl transferase on its surface which is involved in gly- 78 

colysis [25,33,34]. Glycolysis is the breaking down of glucose in sucrose that is carried out 79 

to obtain energy.  80 
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The glucosyltransferase enzyme continues to work, namely to add more glucose mol- 81 

ecules to form dextran which has a structure very similar to amylase in starch. Dextran 82 

together with other bacteria adheres tightly to the tooth enamel and subsequently forms 83 

plaque on the teeth [35,36]. In addition, glycolysis under anaerobic conditions also pro- 84 

duces lactic acid. This lactic acid causes a decrease in pH to a certain extent so that it can 85 

destroy hydroxyapatite in the tooth enamel and cause the formation of a cavity or hole in 86 

the tooth [37,38] (Figure 2). 87 

 88 

Figure 2. Contribution of S. mutans in the process of biofilm formation [39]. 89 

2.1.2. Streptococcus sanguinis 90 

Streptococcus sanguinis is a type of Gram-positive bacteria that does not have spores 91 

and is a facultative anaerobe. Cell division in S. sanguinis occurs along a single axis and 92 

produces chains or pairs of cocci. The genome sequence of S. sanguinis SK36 isolated from 93 

dental plaque in humans has a circular DNA molecule consisting of 2,388,435-base pairs, 94 

with 2274 predicted protein codes. In tRNA, there are 61 genes that are predicted to be 95 

able to produce 20 amino acids and 50 carbohydrate transporters, including the phos- 96 

photransferase enzyme which functions to transport glucose, fructose, mannose, cellobi- 97 

ose, glucoside, lactose, trehalose, galactitiol, and maltose S. sanguinis is able to utilize var- 98 

ious carbohydrate sources to survive [39]. 99 

Oral biofilm formation begins with the attachment of S. sanguinis and other pioneer- 100 

ing colonists to a macromolecular complex formed on the saliva-coated tooth surface [40- 101 

42]. S. sanguinis was the first bacterium to bind to the biofilm and a species that plays an 102 

important role in the oral biofilm ecosystem [43-46]. However, these bacteria also have a 103 

positive role, namely producing H2O2 as a means to produce excess oxygen and working 104 

as a non-specific antimicrobial agent that can trigger the growth of S. mutans and other 105 

anaerobic periodontal pathogens [47-49].  106 

The negatively charged residue and electrostatic interactions with hydrophilic re- 107 

gions in salivary proteins facilitate the attachment of bacteria to the tooth surface to form 108 

the Acquired Enamel Pellicle (AEP). Although S. sanguinis can directly adhere to saliva- 109 

free hydroxyapatite, the major mineral found in tooth enamel, the initial attachment pro- 110 

cess is most likely driven by the interaction of the streptococcal surface with salivary com- 111 

ponents. Binding to salivary proteins is mediated through protein-protein or protein-car- 112 

bohydrate interactions with receptors exposed on the bacterial surface. Amylase is the 113 

most abundant salivary protein and is present both in AEP and in dental plaque. S. san- 114 

guinis specifically binds to amylase via long filamentous pili [50,51]. 115 
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2.1. Gram-Negative Bacteria  116 

2.1.1. Veillonella parvula 117 

Veillonella parvula is an anaerobic Gram-negative cocci that are part of the normal 118 

flora found in the human mouth and digestive tract [52]. Human oral Veillonella species 119 

include V. parvula, V. dispar, V. atypica, V. denticariosi, V. rogosae, V. tobetsuensis, V. infantium 120 

and V. nakazawae [53-55]. Lactate and malate are the preferred carbon sources by Veillonel- 121 

lae spp. These carbon sources will be metabolized into propionate, acetate, CO2 and H2 122 

[56,57]. Pyruvate, fumarate, and oxaloacetate can also be metabolized, but citrate, iso-cit- 123 

rate and malonate are not. Succinate catabolism has been reported to have not resulted in 124 

suboptimal growth [58]. The balanced stoichiometry of lactate catabolism is (Equation 1): 125 

8 Lactate → 5 Propionate + 3 Acetate + 3 CO2 + H2 [59] (1) 

Evidence that Veillonellae spp acts as a linking species in biofilm development has 126 

been demonstrated in both in vivo and in vitro studies. Human epidemiological studies 127 

have shown Veillonellae spp. very abundant in both supra and sub-gingival plaques as well 128 

as on the tongue and in saliva [60-64]. Veillonella spp. (especially V. parvula) was found to 129 

be associated with dental caries in children [58,65], besides that it was also found in adults, 130 

V. parvula was also one of the most abundant and prevalent bacteria in all samples of both 131 

healthy and carious teeth. However the abundance of V. parvula in carious tooth samples 132 

appears to be higher [66]. The physiological relationship between Veillonellae (as lactate 133 

users) and S. mutans (as lactate producers) has prompted many clinical studies on the 134 

relationship of Veillonellae with caries. As research conducted by Aas et al., [67] also 135 

demonstrated the association of the genera Veillonella with caries development. Belstrom 136 

et al. reported that Streptococcus spp. and Veillonella spp. was the most dominant genera 137 

among all saliva samples from 292 participants with mild to moderate dental caries [68]. 138 

It can be argued that the observed association between cariogenic bacteria and 139 

Veillonella stems from the metabolic need to produce organic acids which are indeed found 140 

in higher concentrations in active caries. So the presence of Veillonellae can be an indication 141 

of, and prediction of, a local decrease in pH. Bradshaw and Marsh reported that the 142 

number and proportion of S. mutans and Lactobacillus spp. increases as the pH decreases, 143 

especially below low pH [69]. Similarly in another clinical study, Gross et al. found the 144 

proportion of Veillonellae spp. increased commensurate with the proportion of 145 

Streptococcus spp [70]. In other words, Veillonellae can be a risk factor for caries initiation, 146 

whereas S. mutans are a risk factor for caries development. 147 

3. Antibacterial 148 

3.1. Definition 149 

Antibacterial is a substance that can inhibit the growth of bacteria and will kill 150 

pathogenic bacteria [71]. Antibacterial is divided into two types, namely bacteriostatic 151 

which suppresses bacterial growth and bactericidal which can kill bacteria [72]. Bacteria 152 

have evolved a lot to be able to survive in various environments and can develop 153 

resistance to various antibacterial reagents quickly [73]. Inhibition of bacteria can be 154 

through several synthesis pathways in bacteria, namely the bacterial cell wall biogenesis 155 

pathway, DNA replication pathway, transcription pathway, and protein biosynthesis 156 

pathway [74]. The cell wall structure consists of peptidoglycan which provides a 157 

mechanical effect on bacteria to maintain morphology. The peptidoglycan layer is formed 158 

from N-acetyl glucosamine and N-acetylmuramic acid linked by 1,4-glycosidic bonds [75]. 159 

 160 

 161 

 162 

 163 

3.2. Antibacterial Mechanism of Secondary Metabolic Compounds 164 
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Several secondary metabolites that are isolated from plants can be an agent of natural 165 

antibacterial. Each compound has their own antibacterial mechanism in inhibiting bacte- 166 

rial. Their mechanism will explain in the following: 167 

3.2.1. Phenol 168 

The mechanism of phenol as an antibacterial agent acts as a toxin in the protoplasm, 169 

damaging and penetrating the wall, causing the function of selective permeability, active 170 

transport, and protein composition control, so that bacterial cells become deformed and 171 

lysed [76-78]. 172 

3.2.2. Flavonoids  173 

Flavonoids work to inhibit bacterial growth by inhibiting nucleic acid synthesis, 174 

changing cytoplasmic membrane function, inhibiting energy metabolism, reducing cell 175 

attachment and biofilm formation, inhibiting porin in cell membranes, disrupting perme- 176 

ability of cell walls and membranes to cause bacterial cell lysis [38,79-82]. In addition, fla- 177 

vonoids also act as inhibitors of the FabZ enzyme and inhibit the production of fimbriae 178 

[83]. 179 

3.2.3. Saponins  180 

Meanwhile, the saponins themselves work as antibacterial by disrupting the stability 181 

of the bacterial cell membrane, causing bacterial cell lysis [84-87]. 182 

3.2.4. Terpenoids  183 

Terpenoids work as antibacterials by disrupting the function of cell membranes to 184 

cause damage to bacterial cell membranes, interfering with glucosyltransferase activity, 185 

inactivating thiol-containing enzymes and causing bacterial death [88-99]. 186 

3.2.5. Alkaloids  187 

Alkaloids inhibit growth and kill bacteria by interfering with the permeability of cell 188 

walls and membranes, inhibitors of nucleic acid and protein synthesis and inhibiting bac- 189 

terial cell metabolism to cause lysis. Besides, alkaloids can also act as inhibitors in the 190 

protein biosynthesis process in bacterial cells [100-102]. 191 

3.2.6. Tannins  192 

Tannins work by coagulating bacterial protoplasm, precipitating proteins, and bind- 193 

ing proteins to inhibit the formation of bacterial cell walls [103-105] (Figure 3). 194 

 195 

Figure 3. Pathway of Inhibition of Bacteria by Antibacterial [106]. 196 

 197 

3.3. Antibacterial Mechanism with MurA Enzyme 198 
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In addition, the antibacterial mechanism can be carried out by inhibiting the action 199 

of the MurA enzyme those catalyzes the first step of bacterial cell wall biosynthesis. There- 200 

fore, the inhibition of the activity of oral pathogenic bacteria can be done by inhibiting the 201 

enzyme MurA [107]. In cell wall peptidoglycan biosynthesis, the enzyme MurA involves 202 

the transfer of the enolpyruvate group from phosphoenolpyruvate (PEP) to UDP-N- 203 

acetylglucosamine (UNAG) to form UDP-N-acetylglucosamine enolpyruvate (UNAGEP) 204 

[92,93].  205 

Based on the performance of fosfomycin, the inhibition of the MurA enzyme is com- 206 

petitive. Antibiotics act as PEP analogues and form covalent bonds with the active cyste- 207 

ine residue of the enzyme as shown in the figure below. Antibiotics interact with enzymes 208 

and UDP-N-acetylglucosamine then forms hydrogen bonds with different segments of 209 

the polypeptide chain. In addition, hydrogen bonds can be formed between the hydroxyl 210 

group of phosphomycin and the C-3 hydroxyl of the sugar ring UDP-N-acetylglucosa- 211 

mine and between one of its phosphonate oxygen atoms and the nitrogen amide of UDP- 212 

N-acetylglucosamine [108]. (Figure 4) 213 

 214 

Figure 4. Catalytic Reaction on MurA. Enzyme [109]. 215 

3.4. Commonly Used Dental Caries Antibiotics 216 

To control caries mediated by pathogenic bacteria, dental and oral hygiene products 217 

are widely used which consist of chemical compounds, such as fluoride, chlorhexidine, 218 

triclosan, cetylpyridinium chloride, and chlorophyll. 219 

3.4.1. Fluoride 220 

Fluoride is the most effective caries prevention agent. Since the 1940s, it has been 221 

added to water supplies and oral care products, such as toothpaste, mouthwash, and 222 

dental floss [110]. In fact, the use of oral hygiene products containing fluoride reduced the 223 

prevalence of caries by 24-26% in permanent teeth. Water fluoridation in the range of 0.50 224 

to 1.00 mg/L-1 is a cost-effective method for moderating caries potential [111]. In addition, 225 

the combination of nicomethanol hydrofluoride with siliglycol further enhances fluoride 226 

uptake by teeth and controls or inhibits dental biofilm development and strengthens tooth 227 

structure [112]. However, the use of fluoride for oral health also causes side effects, such 228 

as the emergence of fluoride-resistant strains [113,114] 229 
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3.4.2. AIK(SO4)2 230 

AIK(SO4)2 was found to be able to reduce fissure caries, both smooth surface and 231 

sulcus caries. The mechanism of dental caries treatment of alum may be almost the same 232 

as the mechanism of dental caries treatment using fluoride [115]. 233 

3.4.3. Chlorhexidine (CHX) 234 

Dental and oral hygiene products consisting of another chemical compound, namely 235 

chlorhexidine (CHX), chlorhexidine is a symmetric bis-biguanide agent consisting of two 236 

chloroguanide chains linked by a central hexamethylene chain and has diverse medical 237 

applications as a surface disinfectant and as an antiseptic. for topical application. 238 

chlorhexidine carrying two positive charges at physiological pH which can interact 239 

electrostatically with negatively charged phospholipids (CHX) has been used to control 240 

dental caries caused by acid tolerant bacteria such as S. mutans since the 1970s [116]. 241 

However, the use of chlorhexidine also causes certain disadvantages, in long-term use 242 

such as tooth staining and taste changes [117]. It is also believed that the continued and 243 

increasing use of chlorhexidine can lead to the emergence of new strains of mycobacteria 244 

with lower susceptibility  245 

High prevalence of dental caries and the weakness of the strategies used today 246 

indicate an urgent need to identify alternative treatment options that are more effective, 247 

efficient, and non-toxic, one of which is by utilizing herbal medicines derived from 248 

medicinal plants [118]. In recent decades, research focus has also shifted to herbal 249 

medicines due to increasing bacterial resistance and side effects of antimicrobial agents. 250 

Extracts of plant origin can enhance antibiotic efficacy when used in combination against 251 

bacterial pathogens [10]. In addition, the use of medicinal plants or natural products is 252 

indeed a safe approach for rapid clinical translation because they are generally recognized 253 

as safe by the United States Food and Drug Administration. 254 

4. Piper crocatum Ruiz & Pav 255 

Based on some research literatures, it has been reported that red betel leaf has the 256 

potential to be used as a natural antibacterial agent in treating dental and oral health 257 

problems. Red betel leaf (P. crocatum Ruiz & Pav) is a plant that grows in the tropics and 258 

was previously known as an ornamental plant, but was later used as a medicinal plant 259 

[119]. P. crocatum Ruiz & Pav is a natural ingredient that has the potential to treat dental 260 

caries and the leaf contains secondary metabolites such as essential oils, flavonoids, 261 

alkaloids and phenolic compounds which may be active against S. mutans which play a 262 

role in caries formation. The use of red P. crocatum Ruiz & Pav is traditionally useful in 263 

curing diseases such as canker sores and toothache. While the red betel leaf decoction 264 

which is antiseptic can act as a mouthwash, preventing bad breath. From chromatography 265 

it is known that P. crocatum Ruiz & Pav leaf contains flavonoid compounds, polyphenol 266 

compounds, tannins, and essential oils, where flavonoids are known to be inhibitors of 267 

the growth of S.mutans [11,50]. 268 

4.1. Isolation of Secondary Metabolites of Piper crocatum Ruiz & Pav 269 

Several studies reported the isolation of P. crocatum Ruiz & Pav by many methods. Li 270 

et al., 2019 isolated 2.60 kg of dried red betel leaf samples, then extracted by reflux method 271 

using methanolic solvent (5L×3 times). The results of the isolation of P. crocatum Ruiz & 272 

Pav leaves revealed twenty three compounds including fifteen phenolic compounds (1- 273 

15), two monoterpenes (16 and 17), three sesquiterpene compounds (19-21), phenolic 274 

amide glycosides (22), neolignans (23), and the flavonoid compound C-glycoside (24). The 275 

structure of the compounds obtained were identified through spectroscopic methods and 276 

compared with the literature. Seven compounds (7, 11, 13, 14, 17, 20, and 24) of the species 277 

P. crocatum Ruiz & Pav and seventhen others (1-6, 8-10, 12, 15-16, 18-19, and 21-23) from 278 
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the genus Piper and the family Piperaceae which has been isolated and reported for the first 279 

time [120]. (Figure 5) 280 

281 
(Continued) 282 
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 283 

 284 

Figure 5. Compounds obtained from the methanol extract of red betel leaf. (1) (8R)-8-(4-hydroxy- 285 
3,5-dimethoxy)-propane-8-ol-4-O-β-D-glucopyranoside; (2) 4-Allyl-2,6-dimethoxy-3-hydroxy-1-D- 286 
glucopyranoside; (3) 3-[(1E)-3-hydroxy-1-propen-1-yl]-2,5-dimethoxyphenyl-D-glucopyranoside; (4) 287 
Cimidahurinin; (5) Erigeside II; (6) Syringe; (7) β-phenylethyl-β-D-glucoside; (8) Methylsalicylate-2- 288 
O-β-D-glucopyranoside; (9) Icariside D1; (10) 4-Hydroxybenzoic acid-D-glucosylester; (11) Benzyl- 289 
β-D-glucoside; (12) Phenylmethyl-6-O-α-L-arabinofuranosyl-β-D-glucopyranoside; (13) 290 
Hydroxytyrosol-1glucopyranoside (14) Gentisic acid; (15) Catechaldehyde; (16) (S)-Menthiafolic 291 
acid; (17) Ioliolide; (18) 5β,6β-dihydroxy-3α-(β-D-glucopyranosyloxy)-7E-Megastigmen-9-one; (19) 292 
(3E)-4-[(1S,2S,4S)-4-(β-D-glucopyranosyloxy)-1,2-dihydroxy-2,6,6-tri-methylcyclohexyl]3-buten-2- 293 
one; (20) (6S,9S)-roseoside; (21) Cuneataside E (22) N-trans-feruloyltyramine-4′-O-β-D- 294 
glucopyranoside; (23) Syringaresinol-β-D-glucoside; (24) Vitexin 2″-O-rhamnoside. 295 

Another isolation method was carried out by Emrizal et al., 2014 which was P. 296 

crocatum Ruiz & Pav as much as 0.84 kg were extracted at room temperature with meth- 297 

anolic solvent to obtain a crude methanolic extract of 253.27 g (30.11%) after which the 298 

extract was evaporated and proceed to separate the components of the compound. The 299 

results of the isolation obtained two compounds from the P. crocatum Ruiz & Pav plant 300 

which were then identified based on literature data and spectroscopic analysis, it was 301 

concluded that the two compounds were β-sitosterol and 2-(5',6'-dimethoxy-3',4'- 302 

methylenedioxyphenyl)-6-(3”,4”,5-trimethoxyphenyl)-dioxabiclo [3,3,0] octane. In 303 

addition, the two compounds were also reported to have antitumor activity with an IC50 304 

value of 2.04; 1.34, 2.08 and 27.40 g/mL in the fractions of n-hexane, ethyl acetate, 305 

buthanolic, and methanolic extract, respectively [121] (Figure 6). 306 

 307 
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 308 

Figure 6. Compounds obtained from the methanolic extract of red betel leaf (P. crocatum Ruiz & 309 
Pav). (25) β-sitosterol; (26) 2-(5',6'-dimethoxy-3',4'-methylenedioxyphenyl)-6-(3”,4”,5- 310 
trimethoxyphenyl)-dioxabiclo [3,3,0] octane. 311 

Arbain et al., 2018 isolated a 1.10 kg sample of P. crocatum Ruiz & Pav by using the 312 

maceration extraction method twice with methanolic solvent (5L) for 48 hours. Two new 313 

bicyclo [3.2.1] octanoid neolignans of the guianine type, crocatin A and crocatin B, 314 

together with the known compounds pachypodol and 1-triacontanol isolated from 315 

Indonesian P. crocatum Ruiz & Pav leaf. Its structure and configuration were determined 316 

by 1D- and 2D-NMR, MS spectroscopy, and single-crystal X-ray diffraction analysis [122] 317 

(Figure 7). 318 

 319 

Figure 7. Compounds obtained from the methanolic extract of red betel leaf (P. crocatum Ruiz & 320 
Pav). (27) Crocatin A; (28) Crocatin B; (29) Pachypodol [4′,5-dihydroxy-3,3′,7-trimethoxyflavone]; 321 
(30) 1-Triacontanol. 322 

In a study conducted by Chai et al., (2021), 2.60 kg of dried leaves of P. crocatum Ruiz 323 

& Pav were isolated which were then extracted using the reflux method using methanol 324 

(5L×3 times) as a solvent. The isolation results reported that four bicyclo[3.2.1]octanoid 325 

neolignans were isolated from the methanolic extract of P. crocatum Ruiz & Pav. 326 

Neolignans were identified as pipcroside A, pipcroside B, pipcroside C and crocatin B. In 327 

addition, this study by Chai et al., 2021 also provides the basis for further exploration of 328 

P. crocatum Ruiz & Pav and bicyclo [3.2.1] octanoid neolignans from the Piper plant as a 329 

new source of natural antineoplastic agents [123]. (Figure 8) 330 
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 331 

Figure 8. Compounds obtained from the methanolic extract of red betel leaf. (31) Pipcroside A; (32) 332 
Pipcroside B; (33) Pipcroside C; (34) Bicyclo [3.2.1] octanoid neolignans. 333 

4.1. Bioactivities of Piper crocatum Ruiz & Pav 334 

The Piperaceae family is one type of plant that is often found in the surrounding en- 335 

vironment and several types of plants in that family are classified as dicotyledonous 336 

plants. One of them that is often used by the community as a traditional medicinal plant 337 

is the Piper genus. It has more than 700 species spread throughout the world and commer- 338 

cial, economic and medicinal importance. Many plant species of this genus have high po- 339 

tential for local and industrial uses, as well as applications in botanical pharmacy, phar- 340 

macognosy and traditional medicine. The efficacy of the drug basically comes from sev- 341 

eral secondary metabolite compounds contained in the plant. 342 

Secondary metabolites of the Piper genus, in addition to their unique structure, are 343 

also reported to have potential as bioactive compounds. Tests for the bioactivity of this 344 

genus have been carried out on both extracts and pure compounds. The isolation results 345 

support its use in traditional medicine (Table 1). 346 

 347 

 348 

 349 
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Table 1. Bioactivities of Isolated Piper Genus. 367 

No. Species Secondary Metabolites Plant Parts Bioactivity References 

1 P. betle Phenylpropanoid Leaf Antioxidant Atiya et al., 2018 [124] 

2 P. terminaliflorum tseng Furfuran Lignan All parts of plant Anticancer T. Liu et al., 2018 [125] 

3 P. chimonantifolium 
Flavonoids 

Steroids 
Leaf Antifungal Lago et al, 2012 [126] 

4 P. montealegreanum 
Monoterpens  

Seskuiterpens  
Twig  

Da S. Alves et al., 2011 

[127] 

5 P. hispidum 
Chalcones, 

Flavanone  
Leaf Antileishmanial Ruiz et al., 2011 [128] 

6  P. maingayi Amida  Twig Antibacterial Hashim et al., 2019 [129] 

7 P. officinarum 

Phenylpropanoid 

Alkaloids 

Triterpene  

Twig Antioxidant Salleh et al., 2014 [130] 

8 P. taiwanense Amida Aerial Antioxidant Chen et al., 2017 [131] 

9  P. sarmentosum Flavonoids Leaf Antioxidant Ugusman et al., 2011 [132] 

10 P. solmsianum C.  Flavonoids Twig Antifungal 
De Campos et al., 2005 

[133] 

11 P. betle L.  Terpenoid  Leaf Antibacterial Batubara et al., 2011 [134] 

12 P. betle L. Phenolic Leaf Antibacterial Kurnia et al., 2020 [135] 

13 P. ningrum Alkaloid-piperidine  Fruit Anticancer Reshmi et al., 2010 [136] 

 368 

Like plants from other Piper genera, P. crocatum Ruiz & Pav also has some bioactivity, 369 

both from the level of extract, fraction and isolation results, several bioactivity of red betel 370 

has been reported. In the table below are some studies of isolation of P. crocatum Ruiz & 371 

Pav with various kinds of bioactivity of each (Table 2). 372 

Table 2. Bioactivities of Isolated P. crocatum Ruiz & Pav Leaves. 373 

No. Secondary Metabolites Plant Parts Bioactivities References 

1 

Flavonoids 

Terpenoids 

Steroids 

Leaf 

 

Antitumor 

 

Emrizal et al., 2014 [121] 

 

2 

2 Flavonoids 

2 monoterpenes 

3 seskuiterpenes 

17 Glucoside  

Leaf 
Anti-inflammatory 

 

Xu et al., 2019 [137] 

 

3 12 Phenolic Leaf Hypoallergenic Li et al., 2019 [138] 

4 
Bicyclo[3,2,1]Octanoid Neo-

lignane 
Leaf 

Pyruvate dehydrogenase  

inhibitors 
Chai et al., 2021[139] 

5 Essential Oil Leaf Antibacterial Rizkita et al., 2017 [13] 

4.2. Antibacterial Activity of Red Betel Extract 374 

One of the bioactivities of P. crocatum Ruiz & Pav which is the topic of this review is 375 

antibacterial activity. especially the antibacterial activity of red betel against the bacteria 376 

S. mutans, S. sangguinis, V. parvula and other bacteria found in the oral cavity that cause 377 

dental and oral health problems, one of which is dental caries. So it can be known how the 378 

potential of red betel as an antibacterial agent by looking at several studies that have been 379 

reported. The table below shows data from previous research reports that reported the 380 

ability of red betel leaf extract as an antibacterial (Table 3). 381 
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Table 3. Antibacterial Activity Methods of Red Betel Extract (P. crocatum Ruiz & Pav). 382 

No. Compounds Types of Bacteria Methods References 

1 

Flavonol 

Chalcone 

Anthocyanins  

S. mutans 

The Kirby-Bauer method of disc diffusion test com-

bined UV irradiating treatment was used. The results 

showed the diameter of the inhibition zone (15.00 ± 

0.05) mm for 10 watt and (15.96 ± 0.05) mm for 15 watt. 

Dyah Astuti 

et al., 2020 

[140] 

2 

Alkaloids 

Steroids 

Tannins 

B. subtilis 

P. aeuruginosa 

Antibacterial activity was tested using the well method. 

Inhibited the growth of B. substilis and P. aeruginosa 

bacteria but the activity was weak, the inhibition zone 

was < 5mm 

Puspita et al., 

2019 [141] 

3 

Flavonoid 

Saponin 

Tannins 

Phenolic 

Staphylococcus epider-

midis 

Bacterial test was carried out using the well method, ex-

tract concentrations of 50 and 100% could inhibit the 

growth of S. epidermidis 

Kusuma et al., 

2019 [142] 

4 Tannins Staphylococcus aureus 

Tests using the well method, can inhibit S. aureus bacte-

ria. Maceration extraction technique to get the average 

inhibition zone 12.30 mm. 

Soleha, 2018 

[143] 

5 

Flavonoids 

Alkaloids 

Tannins 

Essential Oil 

Porphyromonas gingi-

valis  

S. viridians 

The antibacterial test was carried out using the well 

method, the inhibition zone on P. gingivalis was 10.34 

mm while S. viridians was 8.42 mm. 

 Pujiastuti et 

al., 2015 [144] 

Research conducted by Rizkita et al., (2017), the research procedure includes four 383 

stages, namely plant determination, betel leaf oil refining, identification of betel oil 384 

components, and betel oil activity test, then comparing the two oils [145]. Further 385 

component identification was carried out by mass spectrometry. The results of mass 386 

spectrometry will obtain the mass spectrum of each peak detected on the GC 387 

chromatogram. The mass spectra analysis was based on the value of Similarity Index (SI), 388 

base peak, and the fractional trend of the mass spectra compared to the library mass 389 

spectra, namely WILEY229.LIB. Reported that the isolation results from P. betle L and P. 390 

crocatum Ruiz & Pav contain essential oils which consist of five main active compounds 391 

that have antibacterial properties. The test was carried out by applying the disc method. 392 

The media used was Mueller Hinton Agar media because in this medium S. mutants 393 

bacteria lived optimally. The agar media that had been planted with the test bacteria were 394 

filled with samples of green betel oil and red betel oil with concentration variation (100, 395 

75, 50, and 25%), propylene glycol solvent as a negative control, and amoxicillin as a 396 

positive control (Figure 9) [13]. 397 

 398 

Figure 9. Structure of compounds of isolated red betel leaf oil. (35) Camphene and (36) Myrcene [13]. 399 

These compounds are terpenoid group compounds including camphene, sabinene, 400 

cariophilene, humulena, and germakron in green betel while the terpenoid compounds in 401 

red betel leaf include sabinene and mirsen. The antibacterial activity test of these 402 

compounds proved that there was an inhibition of the growth of S. mutans bacteria. 403 

Antibacterial compounds are thought to be able to inhibit the growth of Gram-positive 404 

bacteria by penetrating the cell wall, the cell wall of Gram-positive bacteria has a simple 405 

composition consisting of 60-100% peptidoglycan, which is made of N-acetyl glucosamine 406 

and N-acetyl muramate. The simple arrangement of the cell wall and the absence of an 407 
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outer membrane causes antibacterial compounds to penetrate the cell wall and interfere 408 

with the cell wall biosynthesis process. 409 

Sesquiterpene compounds have hydrophobic properties that cause disruption of the 410 

integrity of bacterial cells by reducing intracellular ATP reserves, lowering cell pH, being 411 

absorbed and penetrated into bacterial cells, then bacteria will experience precipitation 412 

and protein denaturation, and will lyse bacterial cell membranes. The difference in the 413 

concentration of the content contained in green betel leaf and red betel leaf contains 1.00- 414 

4.20% (w/v) essential oil yield, chavicol 7.20-16.70%, cavibetol 2.70-6.70% and eugenol 415 

26.80-42.50%. Meanwhile, the yield of red betel leaf was 0.73 (w/v), chavicol 5.10-8.20% 416 

and eugenol 26.10-42.50%. 417 

5. Conclusions 418 

Medicinal plants of P. crocatum Ruiz & Pav has a significant role in applications of 419 

ethno-medicine. They contain secondary metabolites that have several bioactivities such 420 

as antioxidant, antimicrobial, antibacterial, antifungal, anti-inflammatory and others. The 421 

bioactivity is influenced by the structure and functional groups of each secondary 422 

metabolite compound contained therein. Based on several research reports, it can be seen 423 

that P. crocatum Ruiz & Pav has considerable potential as an antibacterial agent in the 424 

treatment of oral health problems such as dental caries with several different methods. 425 

Secondary metabolites contained in P. crocatum Ruiz & Pav have their own mechanism to 426 

inhibit bacteria. This scientific finding is a useful information for further drug research 427 

and development to find as new potential antimicrobial agent. 428 

6. Patent 429 

This section is not mandatory but may be added if there are patents resulting from 430 

the work reported in this manuscript. 431 
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Abstract Creatine is a very popular amino acid widely utilized in the sports world due to its functions mainly related to muscle building and increasing
performance. The present work investigates the behavior of creatine aqueous solutions and of creatine aqueous in the presence of [...] Read more.
(This article belongs to the Special Issue Materials for Healthcare ( /journal/molecules/special_issues/Healthcare_Materials )) 

► Show Figures
(/molecules/molecules-27-06310/article_deploy/html/images/molecules-27-06310-g001-550.jpg) (/molecules/molecules-27-

06310/article_deploy/html/images/molecules-27-06310-g002-550.jpg) (/molecules/molecules-27-06310/article_deploy/html/images/molecules-27-

06310-g003-550.jpg) (/molecules/molecules-27-06310/article_deploy/html/images/molecules-27-06310-g004-550.jpg) (/molecules/molecules-27-

06310/article_deploy/html/images/molecules-27-06310-g005-550.jpg) (/molecules/molecules-27-06310/article_deploy/html/images/molecules-27-

06310-g006-550.jpg) (/molecules/molecules-27-06310/article_deploy/html/images/molecules-27-06310-g007-550.jpg)

Open Access Review

Mechanistic Aspects for The Modulation of Enzyme Reactions on the DNA Scaffold (/1420-3049/27/19/6309)
by Peng Lin (https://sciprofiles.com/profile/2393903),

Hui Yang (https://sciprofiles.com/profile/author/VG1GZGxkME5TdERxQlZ6U2ZwYTdSUG5xRjFDa1luZXVjNWhUcEh4cnYxaz0=),
Eiji Nakata (https://sciprofiles.com/profile/1342911) and Takashi Morii (https://sciprofiles.com/profile/1289465)

Molecules 2022, 27(19), 6309; https://doi.org/10.3390/molecules27196309 (registering DOI) - 24 Sep 2022

Abstract Cells have developed intelligent systems to implement the complex and efficient enzyme cascade reactions via the strategies of organelles,
bacterial microcompartments and enzyme complexes. The scaffolds such as the membrane or protein in the cell are believed to assist the co-localization
of enzymes [...] Read more.
(This article belongs to the Special Issue Nucleic Acids Chemistry: A Special Issue Celebrating the 75th Birthday of Prof. Makoto Komiyama (
/journal/molecules/special_issues/nucleic_acids_chemistry_makoto_komiyama )) 
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Abstract High concentrations of antibiotics have been identified in aqueous media, which has diminished the quality of water resources. These
compounds are usually highly toxic and have low biodegradability, and there have been reports about their mutagenic or carcinogenic effects. The aim of
this [...] Read more.
(This article belongs to the Special Issue Feature Papers in Applied Chemistry ( /journal/molecules/special_issues/Papers_Applied_Chemistry )) 
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Abstract Treatment of several autoimmune diseases and types of cancer has been an intense area of research over the past two decades. Many
signaling pathways that regulate innate and/or adaptive immunity, as well as those that induce overexpression or mutation of protein kinases, have [...]
Read more.
(This article belongs to the Special Issue Molecular Docking in Drug Design II ( /journal/molecules/special_issues/molecular_docking_drug_design
)) 
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Molecules 2022, 27(19), 6306; https://doi.org/10.3390/molecules27196306 (registering DOI) - 24 Sep 2022

Abstract Silver nanoparticles (AgNPs) have recently gained interest in the medical field because of their biological features. The present study aimed at
screening Rhizophora apiculata secondary metabolites, quantifying their flavonoids and total phenolics content, green synthesis and characterization of R.
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apiculata silver nanoparticles. In [...] Read more.
(This article belongs to the Special Issue Novel Natural Compounds as Wound Healing Agents (
/journal/molecules/special_issues/NaturalCompounds_Healing )) 
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Molecules 2022, 27(19), 6305; https://doi.org/10.3390/molecules27196305 (registering DOI) - 24 Sep 2022

Abstract Lysozymes are hydrolytic enzymes characterized by their ability to cleave the β-(1,4)-glycosidic bonds in peptidoglycan, a major structural
component of the bacterial cell wall. This hydrolysis action compromises the integrity of the cell wall, causing the lysis of bacteria. For more than 80 [...]
Read more.
(This article belongs to the Special Issue Recent Advances in Antimicrobial Materials ( /journal/molecules/special_issues/Antimicrob_Mater )) 
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Molecules 2022, 27(19), 6304; https://doi.org/10.3390/molecules27196304 (registering DOI) - 24 Sep 2022

Abstract Cynara scolymus L. (Family: Compositae) or artichoke is a nutritious edible plant widely used for its hepatoprotective effect. Crude extracts of
flower, bract, and stem were prepared and evaluated for their in vitro antioxidant activity and phenolic content. The flower crude extract exhibited [...] Read
more.
(This article belongs to the Special Issue Bioactive Compounds and Antioxidant Activity of Extracts from Different Natural Plants (
/journal/molecules/special_issues/antioxid_extra )) 
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Abstract Sodium-ion batteries (SIBs) have attracted increasing interest as promising candidates for large-scale energy storage due to their low cost,
natural abundance and similar chemical intercalation mechanism with lithium-ion batteries. However, achieving superior rate capability and long-life for
SIBs remains a major challenge owing [...] Read more.
(This article belongs to the Section Electrochemistry (/journal/molecules/sections/electrochemistry)) 
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Molecules 2022, 27(19), 6302; https://doi.org/10.3390/molecules27196302 (registering DOI) - 24 Sep 2022

Abstract The present study aimed to explore the effects of ultra-high pressure (UHP) on the cathepsin (B, D, H, and L) activities, protein oxidation, and
degradation properties as well as quality characteristics of iced shrimp (Litopenaeus vannamei). Fresh shrimps were vacuum-packed, treated [...] Read
more.
(This article belongs to the Special Issue Quality Control in Food Processing ( /journal/molecules/special_issues/quality_food )) 

Open Access Article

Comparison of ATR–FTIR and O-PTIR Imaging Techniques for the Characterisation of Zinc-Type Degradation Products in a Paint Cross-Section
(/1420-3049/27/19/6301)
by Lynn Chua (https://sciprofiles.com/profile/2258490), Agnieszka Banas (https://sciprofiles.com/profile/2389881) and

Krzysztof Banas (https://sciprofiles.com/profile/author/ZTZVTEd1RFkxQmJNWjZsdGJsLzZSbm41U2lqeHN1c0oxbDlxeXc0d1plWT0=)
Molecules 2022, 27(19), 6301; https://doi.org/10.3390/molecules27196301 (registering DOI) - 24 Sep 2022

Abstract ATR–FTIR (attenuated total reflection–Fourier-transform infrared) microscopy with imaging is widely used in the heritage field to characterise
complex compositions of paint cross-sections. However, some limitations include the need for ATR crystal contact with the sample and the inability to
resolve particle size below [...] Read more.
(This article belongs to the Special Issue Application of Chemical Imaging Techniques for Characterization of Art Materials (
/journal/molecules/special_issues/appl_chem_imag_character_art_mat )) 
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Cites / Doc. (4 years) 2006 1.078
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Documents Year Value
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