Repository Universitas Pakuan

Detail Karya Ilmiah Dosen

Agung Bagus Pambudi, Riskaviana Kurniawati, Ani Iryani, Djoko Hartanto

Judul : Effect of calcination temperature in the synthesis of carbon doped TiO2 without external carbon source
Abstrak :

Carbon doped TiO2 have been successfully synthesized in this study using sol-gel method and followed by carbonization in hypoxic condition. Titanium (IV) isopropoxide and isopropanol were used as starting material without addition of external carbon precursor. The carbon-doped TiO2 were synthesized with different calcination temperature at under hypoxic condition. The physical properties of carbon-doped TiO2 were characterized by Fourier Transformation Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and Diffuse reflectance UV-Vis Spectroscopy (DRUVS). The synthesized material shows carbon related peak at 1540 and 1400 cm-1 that can be ascribed as carboxylic (COO- ) and carbonyl (CO3 2-) vibration respectively from FTIR spectra. Based on XRD result, it can be infered that TiO2 that indicate decrease bandgap of synthetized carbon doped TiO2 compared to conventional anatase TiO2 . The carbon doped TiO2 in this study show ability to absorb at visible light radiation as suggested by DRUVS spectra. It is hoped that our work could be applied as visible light photocatalyst in industrial and enviromental application and provided valuable information in synthesis of non-metal doped TiO2.

Tahun : 2018 Media Publikasi : Prosiding
Kategori : Prosiding No/Vol/Tahun : 2049 / 1 / 2018
ISSN/ISBN : 0094-243X
PTN/S : Universitas Pakuan Program Studi : KIMIA
Bibliography :

1. X.B. Chen, S.S. Mao. Chem. Rev. 107, 2891 (2007).

2. C. Xie, S.H. Yang, J.W. Shi, C.M. Niu, Catalyst, 6, 117 (2016).

3. Y.T. Lin, C.H. Weng, Y.H. Lin, C.C. Shiesh, F.Y. Chen, Separ. and Purif. Tech, 116,114 (2013).

4. A. Fujishima, T.N. Rao, D.A. Tryk. J. Photochem. Photobiol. C., 1, 1 (2000).

5. Y. Zhang, Z.Y. Zhao, J.R. Chen, L. Cheng, J. Chang, W.C. Sheng, App Cat B: Env., 165, 715 (2013).

6. L. Jing, W. Zhou, G. Tian, H. Fu, Chem. Soc. Rev., 42, 9509 (2013).

7. A.T. Rajamanickam, P. Thirunavukkarasu, K. Dhanakodi, J. Mater. Sci., 26, 4038 (2015).

8. H. Li, D. Wang, H. Fan, P. Wang, T.F. Jiang, T.F. Xie, J. of Coll. and Inter., 354, 175 (2011).

9. P.T.N. Nguyen, C. Salim, W. Kurniawan, H. Hinode, Catalysis Today, 230, 166 (2014).

10. J.A. Sullivan, E.M. Neville, R. Herron, K.R. Thampi, J.M.D. MacElroy, J. Photochem. and Photobio. A., 289, 60 (2014).

11. L. Yu, Y. Lin, J. Huang, S. Lin, D. Li, J Am Ceram Soc., 100, 333 (2017).

12. A.J. Albrbar, V. Djokic, J. Bjelajac, J. Kovac, J. Cickovic, M. Mitrić, Ceram. Int., 42, 16718 (2016).

13. X. Zhu, Z. Liu, J. Fang, S. Wu, W. Xu, J. Mater. Res., 28, 1334 (2013).

URL :

 

Document

 
back