Repository Universitas Pakuan

Detail Karya Ilmiah Dosen

Mochamad Yunus

Judul : Analytical approach of permittivity and permeability of spiral-resonator shaped planar structure implemented as antenna radiator
Abstrak : This paper presents analytical approach of permittivity and permeability of planar structure which takes a shape of spiral-resonator (SR) implemented as an antenna radiator. The use of planar structure for instance as an antenna radiator is recently required in order to have communication devices with compact and light in weight. The approach is carried out by calculating the effective impedance of SR shaped planar structure through its equivalent circuit which consists of resistance, inductance, and capacitance. Afterwards, the effective permittivity and permeability are obtained. To verify the proposed analytical approach, the SR shaped planar structure is also characterized using 3D simulation software to gain the effective permittivity and permeability. It shows that the effective permittivity and permeability which are yielded from simulation and analytical approach have good agreement each other for positive permittivity (μ > 0) and negative permeability (μ <; 0) at the frequency range above 0.8 GHz.
Tahun : 2017 Media Publikasi : Seminar Internasional
Kategori : Prosiding No/Vol/Tahun : 10.1109/ICWT.2017.8284150 / 1 / 2017
ISSN/ISBN : 978-1-5090-6419-9
PTN/S : Universitas Pakuan Program Studi : TEKNIK ELEKTRO
Bibliography :

1. C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, 2005. 2. N. Engheta, R.W. Ziolkowski, Metamaterial: Physics and Engineering Explorations, IEEE Press, John Wiley & Sons Inc., 2006. 3. W.E. Kock, "Metallic delay lenses", Bell System Technical J., vol. 27, pp. 58-82, May 1948. 4. A. Munir, N. Hamanaga, H. Kubo, I. Awai, " Artificial dielectric rectangular resonator with novel anisotropic permittivity and its TE 10δ mode waveguide filter application ", IEICE Trans. Electron., vol. E88-C, no. 1, pp. 40-46, Jan 2005. 5. A. Ikhyari, A. Munir, "Dual-band microstrip patch antenna using capacitive artificial magnetic conductor", Proceedings of 2nd International Conference on Wireless and Telematics (ICWT), pp. 36-39, Aug. 2016. 6. B. Hasanah, A. Munir, "Characteristic improvement of circular waveguide BPF using artificial dielectric resonators", Proceedings of Symposium on Electronics and Smart Devices (ISESD), pp. 298-302, Nov. 2016. 7. V.G. Veselago, " The electrodynamics of substances with simultaneously negative value of ∊ and $mu$ ", Usp. Fiz. Nauk., vol. 92, pp. 517-526, 1967. 8. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, "Composite medium with simultaneously negative permeability and permittivity", Phys. Rev. Lett., vol. 84, no. 18, pp. 4184-4187, May 2000. 9. R.A. Shelby, D.R. Smith, S. Schultz, "Microwave transmission through a two-dimensional isotropic left-handed metamaterial", Appl. Phys., vol. 78, no. 4, pp. 489-491, Jan. 2001. 10. K-Y. Kim, J-H. Lee, J-R. Sohn, H-S. Tae, "Dispersion characteristics of dispersive double negative (DNG) metamaterial columns", Proceedings of IEEE Antennas and Propagation Society (AP-S) Symposium, pp. 3765-3768, Jun. 2004. 11. F. Bilotti, A. Toscano, L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples", IEEE Trans. Antennas Propag., vol. 55, no. 8, pp. 2258-2267, Aug. 2007. 12. F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K.B. Alici, E. Ozbay, "Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions", IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2865-2873, Dec. 2007. 13. M. Yunus, F.Y. Zulkifii, E.T. Rahardjo, " Radiation characteristics of a novel $mu$ negative metamaterial spiral resonator antenna at the 2.4 GHz ", Open Journal of Antennas and Propagation, vol. 4, no. 1, pp. 1-11, Mar. 2016. 14. F. Martín, F. Falcone, J. Bonache, T. Lopetegi, R. Marqus, M. Sorolla, "Miniaturized coplanar waveguide stopband filters based on multiple tuned split ring resonators", IEEE Microw. Wireless Compon. Lett., vol. 13, no. 12, pp. 511-513, Dec. 2003.