Repository Universitas Pakuan

Detail Karya Ilmiah Dosen

E T Tosida, R Widianto, M Ganda, R R Lathif

Judul : A Hybrid Data Mining Model for Indonesian Telematics SMEs Classifications
Abstrak :



The power of information technology and communication (telematics) is one of the vital forces for every country. In the Industrial Revolution 4.0 era, the development of telematics was one of the priorities of the Indonesian government nawacitas. The development of the field of telematics in Indonesia for a decade is inseparable from the role of SMEs. The role of telematics SMEs in the strength of national development can be mapped through the optimization of National Economic Census data (Susenas). The detailed 2016 Susenas data has not been released by BPS. Therefore, this research still uses 2006 Susenas data. The 2016 Susenas recapitalization shows that Indonesian telematics has a very large power, consisting of 2.6 million players. This great strength needs to be optimized to have high competitiveness so as to be able to support Indonesia's development. The purpose of this study was to conduct hybrid data mining modeling to be used as a decision model in mapping the classification of Indonesian telematics SMEs. The classification map includes the feasibility of assistance for the empowerment of Indonesian telematics SMEs, business prospects and development plans for Indonesian telematics SMEs. The hybrid data mining model with K-Medoids & C4.5 technique shows better performance compared to other models, with an average accuracy rate of 71.87%. This model validation test also involves K-fold cross falidation.

Keywords: Decisions Model, Hybrid Data Mining, Industry Revolution 4.0,  Nawacita, Telematics, 
Tahun : 2018 Media Publikasi : Seminar Internasional
Kategori : Prosiding No/Vol/Tahun : 1 / 3 / 2018
PTN/S : Universitas Samratulangi Manado Program Studi : ILMU KOMPUTER
Bibliography :


[1] Jian Qin, Ying Liu, Roger Grosvenor. 2016. A Categorical Framework of Manufacturing for Industry 4.0 and Beyond. Procedia CIRP 52 (2016) 173-178. Elsevier. doi: 10.1016/j.procir.2016.08.005

[2] Jaswadi, Mohammad Iqbal, Sumiadji. 2015. SME Governance in Indonesia – A Survey and Insight from Private. Procedia Economics and Finance 31 ( 2015 ) 387 – 398. Elsevier.

[3] Nasution LK, Murni M, Dewi IS, Supriyanto. 2017. The Implementation OfSakEtap And The Effect Of Umkm Preparation In Dealing With Mea (Asean Economic Society) (Case Study On UMKM Medan &Binjai In 2016). Journal Online JaringanPengajianSeni Bina (JOJAPS), Vol 10 – IRSTC 2017 &RESPEx 2017.

[4]  Tosida ET, Maryana S, Thaheer H, Damin FA. 2015. Visualization model of Small Medium Enterprises (SMEs) telematics services potentiality map in Indonesia. Published in:International Conference on Information & Communication Technology and Systems (ICTS), 2015. Added  toIEEExplorer. January 14th 2016. DOI: 10.1109/ICTS.2015.7379890.

[5]  Tosida, ET, KB Seminar, Y Herdiyeni. 2016. Atribut selection of Indonesian Telematic Services MSMEs Assisstance Feasibility, using AHP. Kursor 8 (2), 2016. DOI:

[6]  Tosida ET, H Thaheer, S Maryana. 2017a. StrategiPeningkatanDayaSaingmelalui Framework Rantai Nilai untukKompetensi Usaha JasaTelematika Indonesia. JurnalPenelitian Pos dan Informatika, 5 (1), p 1-18, 2017.

[7]  Tosida ET, S Maryana, H Thaheer. 2017b. Implementation of Self Organizing Map (SOM) as decision support : Indonesian telematics services MSMEs empowerment. IOP Conference Series : Materials Science and Engineering 166 (1), 012017. IOP Publishing.

[8]  Sommer L. 2015. Industrial Revolution - Industry 4.0: Are German Manufacturing SMEs the First Victims of this Revolution?.  Journal of Industrial Engineering and Management JIEM, 2015 – 8(5): 1512-1532. – Online ISSN: 2013-0953 – Print ISSN: 2013-8423. 1470.

[9]  Jones C, Pimdee P. 2017. Innovative Ideas : Thailand 4.0 and the fourth industrial revolution. Asian International Journal of Social Sciences, 17(1), 4 – 35.

[10] Pereira T, L Barreto, A Amaral. Network and Information Security Challenges within Industry 4.0. Paradigm. 2017. Procedia Manufacturing 13 (2017) 1253-1260. Manufacturing Engineering Society International Conference 2017, MESIC 2017, 28-30 June  2017, Vigo (Pontevedra), Spain. Elsevier.

[11] Mishra, D., &Hiranwal, S. 2014. Analysis & implementation of item basedcollaboration filtering using K-Medoid. Paper presented at 2014 International Conference on the Advances in Engineering and Technology Research (ICAETR).

[12] Hadighi SA, Sahebjamnia N, Mahdavi I, Shirazi MA. 2013. A framework for strategy formulation based on clustering approach : A case study in a corporate organization. Knowledge-Base Systems, 49 (2013), 37-49.

[13] Lee H, Lee S,  Byungun Y. 2011. Technology clustering based on evolutionary patterns : The case of information and communications technologies. J. Technological Forecasting & Social Change, 78 (2011) 953-967. DOI : 10.1016/j.techfore.2011.02.002

[14] Dhewanto W, Prasetio EA, Ratnaningyas S, Herliana S, Cherudin R, AinaQorri, Bayuningrat RH, Rachmawaty E. 2012. Moderating effect of cluster on firms innovation capability and business performance : A conceptual framework. Procedia-Social and Behavioral Science Vol. 65: 867-872. doi: 10.1016/j.sbspro.2012.11.212.

[15] Han, J., Kamber M, Pei J. 2012. Data mining : Concepts and techniques. Third Edition. Morgan Kaufmann is an imprint of Elsevier, 225Wyman Street,Waltham, MA 02451, USA.

[16] Julazadeh, A., M. Marsousi&J. Alirezaie. 2012. Classification based on sparse representation and Euclidian distance. Paper presented at IEEE the Visual Communications and Image Processing (VCIP).

[17] AndraBenesova, Jiri Tupa. 2017. Requirements for Education and Qualification of People in Industry4.0. Procedia Manufacturing 11 (2017) 2; 27th International Conference on Flexible Automation and Intelligent Manufacturing, FAIM2017, 27-30 June 2017, Modena, Italy. doi: 10.1016/j.promfg.2017.07.366

[18] Daniel Palacios-Marqués, Pedro Soto-Acosta, José M. Merigó. 2015. Analyzing the effects of technological, organizational and competition factors on Web knowledge exchange in SMEs. J. Telematics and Informatics 32 (1) : 23–32. Elsevier, j.tele.2014.08.003.0736-5853/@2014.

[19] McGuirk H, Lenihan H, Hart M. 2015. Measuring the impact of innovation human capital on small firms propensity to innovative. J. Research Policy, Vol.44 (4) : 965-976. Elsevier. doi:

[20] Biro Pusat Statistik. 2017. Laporan PDB EkonomiKreatifTahun 2014-2016. KatalogBPS : 9301007. Biro Pusat Statistik. Jakarta. ISBN : 978-602-438-190-5.

[21] Tosida ET, O Hairlangga, F Amirudin, M Ridwanah. 2018. Appication of Decision Rules for Empowering of Indonesian Telematics Services SMEs. IOP Conference Series : Materials Science and Engineering 332 (1), 012018. IOP Publishing. 10.1088/1757-899X/332/1/012018/pdf.




  1. DRPM RistekDikti, as the main sponsor, which gives us Competitive Grants Scheme
  2. Computer Science Department, Mathematics and Natural Science Faculty, PakuanUniversity,and Research Institute Pakuan University, for supporting, coordinating and facilitating to achieve this grants.
  3. Indonesian Communication & Information Ministry, Indonesian Cooperation and SMEs Ministry and Bandung Technopark for active participation in the activities of interviews anduser requirement.