Repository Universitas Pakuan

Detail Karya Ilmiah Dosen

Eneng Tita Tosida, Kudang Boro Seminar, Yeni Herdiyeni

Judul : Attribut Selection of Indonesian Telematic Services MSMEs Assisstance Feasibility, using AHP
Abstrak :

The assistance had not absorbed optimally yet for telematics MSMEs. One of the reasons was the data of telematics MSME which still separated in the several institutions. This research aimed to selection of assistance feasibility attributes using Analytical Hierarchy Process (AHP) based on National Socio-Economic Survey (Susenas) data.  This data attributes conformed to the criteria of assistance feasibility which was implemented among by Ministry of Cooperative, Small and Medium Enterprises (SMEs), and related institutions. The attributes involved the characteristic of technology, economics, human resources, partnerships, obstacles, prospect and other common conditions. The process of data preparation was needed involving cleaning, discretization, description and transformation of data. The AHP technique aimed to produce rankings and the value of attributes. The finding of this research showed that start-up essence and technology factors became the crucial attributes in the feasibility assessment. The other factors were the economy, human resources, partnerships and development planning. The findings of this research had given the new innovations; in addition of the scope of related substance Telematics Service MSMEs which was still studied limitedly, and the selection technique of assessment feasibility attributes based on Susenas data.




Analitycal Hierarchi Process; Preparation; Telematics Services; Susenas

Tahun : 2015 Media Publikasi : Jurnal Nasional Terakreditasi B
Kategori : Jurnal No/Vol/Tahun : 2 / 8 / 2015
ISSN/ISBN : 2301– 6914
PTN/S : Universitas Pakuan Program Studi : ILMU KOMPUTER
Bibliography :


[1] Tosida ET, Maryana S, Thaheer H. The Potencies  of  Indonesian  Telematic Services Enterprises Group. National Conference of Information, Communicatin

& Management Proceeding. Bina Darma

University, Palembang, August, 2014.


[2]   Deputy  of  Finance.  Policy  Development and Empowerment       Program       for Cooperation SME’s in Financing Sector. Ministry of Cooperation and SME’s. 2014.


[3]   Sadeghi A, Azar A, Rad RS. Developing a fuzzy  group  AHP  model  for  prioritizing the factors affecting success of High-Tech SME’s in Iran : A case study. Procedia- Social and Behavioral Scieces 62 (2012)

957-961.                 Elsevier,                 doi:


[4]  Erdil A, Erbiyik H. Selection Strategy via

Analitic  Hierarchy  Process  :  An Application for a Small Enterprise in Milk Sector. Procedia-Social and Behavioral Sciences      195      (2015)      2618-2628.









[5]  Kumar S, Luthra S, Haleem A, Mangla SK, Garg D. International Strategic Management Review 3 (2015) 24-42. Journal


[6]  Sohn  SY,  MoonTH,  Kim  S.  Improved

Technology   Scoring   Model   for   Credit

Guarantee Fund. Expert with Application

28 (2005) 327-331. Elsevier.


[7]   Sohn   SY,   KimS,   Moon   TH.   2007.

Predicting    the    Financial    Performance

Index of Technology Fund for SME using Structural Equaton Model. J. Expert with Application 32 (2007) 890-898. Elsevier.


[8]   Kim   HS,   Sohn   SY.   Support   Vector Machines for Default Prediction of SMEs Based on Technology Credit. European Journal of Operational Research 201 (2010) 838-846. Elsevier.


[9]   Sohn SY, Kim JW. Decision Tree-based Technology Credit Scoring for Strart-Up Firms  : Korean Case.  J. Expert  Systems with Applications 39 (2012) 4007-40112. Elsevier.


[10] McGuirk    H,    Lenihan    H,    Hart    M..

Measuring   the   Impact   of   Innovation Human Capital on Small Firms Propensity to   Innovative.   J.   Research   Policy   44 (2015) : 965-976. Elsevier.


[11] Marcelino-Sadaba  S.,  Perez-Ezcurdia  A, Lazcano AME, Villanieva P. 2014. Project risk Management Methodology for Small Firms. International J. of Project Management 32 (2014) 327-340. Elsevier.


[12] Kemenkominfo.       Indicators       Survey Handbook on Access and Use of ICT in Households. 2015.


[13]McGuirk    H,    Lenihan    H,    Hart    M.

Measuring   the   Impact   of   Innovation

Human Capital on Small Firms Propensity to Innovative. Research Policy 44 (2015) :

965-976. Elsevier.


[14] Wawan D, Prasetio EA, Ratnaningyas S, Herliana S, Cherudin R, Aina Qorri, Bayuningrat RH, Rachmawaty E. Moderating Effect of Cluster on Firms Innovation Capability and Business Performance : A Conceptual Framework. Procedia-Social  and  Behavioral  Science

65 (2012) 867-872. Elsevier.


[15] Marimin    dan    Magfiroh.    Application Techniques Decision making in Supply Chain  Management.    IPB  Press  Bogor.



[16] Lee   H,   Lee   S,   Byungun   Y.   2011.

Technology Clustering Based on Evolutionary Patterns : The Case of Information and Communications Technologies.J. Technological Fore- casting & Social Change, Vol. 78. (2011)

953-967. Elsevier.


[17] Hafsah    MJ.    The    Effort    of    SME’s Development. Infokop Journal, No. 25, Tahun XX, 2004. Smecda..ejournal.unsri.


[18] Bapeda        Banyuwangi.        Role        of Cooperatives in supporting the develop- ment and strengthening of SMEs in Banyuwangi     Regency.     2013.      http://


[19] Afiah NN.  The Role of Entrepreneurship in Strengthening Indonesian SME’s to Facing the Global Financial Crisis. Paper presented at Research Day, Accounting Development Centre, Department of Accounting,     Padjadjaran     University.


hl=id&q=.... al&btnG=.


[20] Ediraras   DT.   Accounting   and   SME’s Performance. Economic Business Journal, No. 2, Vol. 15, August 2010.



[21]Soenarso Wisnu S, Nugraha D, Listyaningrum E. Development of Science and Technology Park (STP) in Indonesia to Support Innovation-Based Regional Economy: Concept   and   Early Stage Development.  World Technopolis Review






(WTR).  Volume  2,  Issue  1,  2013,pp.32-

42.World Technopolis Association. DOI :

10.7165/wtr2013. 2.1.32.


[22] Ju  Y,  Jeon  SY,  Sohn  SY.  Behavioral technology   credit   scoring   model   with time-dependent covariates for stress test.


European Journal of Operation Research,

242       (2015)       910-919.       Elsevier.