Repository Universitas Pakuan

Detail Karya Ilmiah Dosen

Ani Iryani, Djoko Hartanto

Judul : Adsorption study of congo red dye with ZSM-5 directly synthesized from bangka kaolin withouth organic template
Abstrak :

ZSM-5’s adsorption study of kaolin Bangka without organic template using congo red with initial concentration of 50-250 mg / L with variation of contact time of 40-180 minutes. The results of the adsorption of Congo Red (CR) dye at 30oC-50oC with pH 7, the increase in contact time causes the dye to decrease significantly. In addition, an increase in adsorption rate at first step then slows down as it approaches to the equilibrium point. The experimental results using each temperature variation, showing the equilibrium time of the adsorption process at contact time of 100 minutes. Four isotherm adsorption models were used to analyze and measure the results of experimental data adsorption. The ZSM-5 adsorption capacity of Bangka kaolin is exhibited for the reds of Congo isotherm adsorption. The results of isotherm adsorption studies on three temperatures showed the fitting into Langmuir isotherms adsorption type which means the adsroption occured physically monolayer, the kinetics of adsorption clearly follows the first-pseudo-order reaction kinetics with higher R2 closes to 1. The adsorption thermodynamics analysis show that the adsorption chategorized as exthormic reaction (negative value of ∆𝐻°), this conclusion is supported by adsortion capacity data in 180 min contact times which demostrate that the increasing adorption temperature decreasing amount adsorbate being

adsorbed. The ∆𝐺° (Gibb’s Energy) of adsorption are negative in several temperature which demonstrates that the adsroption are spontanously occured in ech temperature. The adsorption study can be used as a reference for ZSM-5 adsorption optimization.

Keywords: Bangka kaolin, ZSM-5, congo red, isotherm adsorption

Tahun : 2017 Media Publikasi : Jurnal Internasional
Kategori : Jurnal No/Vol/Tahun : 13 / 4 / 2017/10/1
ISSN/ISBN : 2289-599X
PTN/S : Program Studi : KIMIA
Bibliography :


[1] Bagane, M., Guiza, S., (2000). “Removal of a dye from textile effluents by adsorption”. Ann. Chim. Sci. Mater. 25, pp.615–626.

[2] Imamura, K., Ikeda, E., Nagayasu, T., Sakiyama, T. and Nakanishi, K. (2002). Adsorption Behavior of Methylene Blue and Its Congeners on a Stainless Steel Surface. J. Colloid Interface Sci. 245, 50.

[3] McKay, G., El-Geundi, M. and Nasser, M.M. (1997) Adsorp. Sci. Technol. 15, 251.

[4] El-Geundi, M. (1997). Adsorbents for industrial pollution control. Adsorp. Sci. Technol. 15, 777.

  1. [5]  McKay, G. (1992). The removal of dye colours from aqueous solutions by adsorption on low-cost materials. J. Chem. Technol. Biotechnol. 32, 759.

  2. [6]  Dai, M. (1998). Mechanism of adsorption for dyes on activated carbon. J. Colloid Interface Sci. 198, 6.

  3. [7]  Gemeay, A.H., El-Sherbiny, A.S. and Zaki, A. (2002). dsorption and kinetic studies of the intercalation of some organic compounds onto Na+- montmorillonite. J. Colloid Interface Sci. 245, 116.

  4. [8]  Parida, S.K. and Mishra, B.K. (1996). Adsorption of Styryl Pyridinium Dyes on Alkali Treated Silica. Indian J. Chem. 37A:618.

  5. [9]  Holzheu, S. and Hoffmann, H. (2002). dsorption study of cationic dyes having a trimethylammonium anchor group on hectorite using electrooptic and spectroscopic methods. J. Colloid Interface Sci. 245, 16

[27] Ho, Y.S., Wang, C.C., (2004). Pseudo-isotherms for the sorption of cadmium ion onto tree fern, Process Biochem. 39 (6), 759–763.

[28] Ho, Y .S., (2004). Pseudo-isotherms using a second order kinetic expression constant, Adsorpt. J. Int. Adsorpt. Soc. 10 (2), 151–158.
[29] Wong, K. K., Lee, C. K., Low, K. S. and Haron, M. J., (2003). Removal

of Cu and Pb by tartaric acid modified rice husk from aqueous solutions.

Chemosphere, 50, 23-28.
[30] Ho, Y.S., (2006), Review of Second-order Models for adsorption

systems, J. Hazard. Mater., 36, 681-689.
[31] Weber, J.W., Morris, J.C., (1963). Kinetics of adsorption oncarbon from

solution. J. Sanitary Eng. Div., ASCE 89, 31–60.
[32] Chabani, B., Amrane, A. and Bensmaili, A. (2006) Kinetic modeling of

the adsorption of nitrates by ion exchange resin. Chem. Eng. J., 125, 111- [10] Perineau, F., Molinier, J. and Gaset, A. (1983). Adsorption de colorants 117.

ioniques sur le dechet lainier de carbonisage. Water Res. 17, 559.

  1. [11]  D. Prasetyoko, N. Ayunanda, H. Fansuri, D. Hartanto. (2012). Phase transformation of rice husk ash in the synthesis of ZSM-5 without organic

    template. J. Math. Fund. Sci., 44 A (3) (2012), pp. 250-262.

  2. [12]  Hartanto, D, Saputro, O, Utomo, WP, Rosyidah, A, Sugiarso, D, Ersam, T, Nur, H & Prasetyoko, D. (2016), Synthesis of ZSM-5 directly from Kaolin without organic template: Part-1: Effect of crystallization

    time. Chemistry - An Asian Journal, 28, pp. 211-215.

  3. [13]  Ojedoku, Adedamola Titi n & Olugbenga Solomon Bello. (2017). Liquid phase adsorption of Congo red dye on functionalized corn cobs, Journal

    of Dispersion Science and Technology, 38:9, 1285-1294.

  4. [14]  Langmuir, I., (1918). The adsorption of gases on plane surfaces ofglass,

    mica and platinum. J. Am. Chem. Soc. 40, 1361–1367.

  5. [15]  Ho, Y.S., Mckay, G., Wase, D.A.J., Foster, C.F., (2000). Study of thesorption of divalent metalions onto peat. Ads. Sci. Technol. 18(7), 639–


  6. [16]  Tarapitakcheevin, P., P. Weerayutsil, and K. Khuanmar. (2013).

    Adsorption of Acid Dye on Activated Carbon Prepared from Water

    Hyacinth by Sodium Chloride Activation. GMSARN Int. J., 7: 83 – 90

  7. [17]  Freundlich, H.M.F., (1906). Uber die adsorption in losungen. Zeitschrift

    fur Physikalische Chemie (Leipzig) 57A, 385–470.

  8. [18]  Dada, A.O., Olalekan, A.P., Olatunya, A.M., Dada, O., (2012). Langmuir,

    Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem. 3, 38–45.

  9. [19]  Temkin, M. and Pyzhev, V. (1940) Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta Physicochimica URSS, 12, 217-222.

  10. [20]  C. Aharoni, M. Ungarish. (1977). Kinetics of activated chemisorption.

    Part 2. Theoretical models. J. Chem. Soc. Faraday Trans., 73, pp. 456-


  11. [21]  Ananta, S., Saumen, Banerjee, Vijay, Veer. (2015). Adsorption Isotherm,

    Thermodynamic and Kinetic Study of Arsenic (III) on Iron Oxide Coated

    Granular Activated Charcoal. Int. Res. J. Environ. Sci. (1) 4 : 64-77

  12. [22]  Yadav SK, Dixit AK. (2015). Efficient Removal of Cr (VI) from Aqueous Solution onto Palm Trunk Charcoal: Kinetic and Equilibrium Studies.

    Chem. Sci. J. 6: 114.

  13. [23]  Günay, A., Arslankaya, E., Tosun, Ä°., (2007). Lead removal from aqueous

    solution by natural and pretreated clinoptilolite: Adsorption equilibrium

    and kinetics. J. Hazard. Mater. 146, 362–371

  14. [24]  Dubinin, M.M., Radushkevich, L.V ., (1947). Equation of the

    characteristic curve of activated charcoal. Proc. Acad. Sci. Phys. Chem.

    Sect. USSR. 55, 331–333.

  15. [25]  Tchobanoglous, G., Burton, F.L., Stensel, H.D., (2003). Wastewater

    engineering: Treatment and reuse, 4th edition. Metcalf & Eddy,

    McGraw-Hill Companies Inc, New York.

  16. [26]  Lagergren, S., (1898). Zurtheorie der sogenannten adsorption

    gelosterstoffe. KungligaSevenska Vetenskapasakademiens, Handlingar 24, 1–39.

[33] Islam, M., Patel, R., (2009). Nitrate sorption by thermally activatedMg/Al chloride hydrotalcite-like compound. J. Hazard. Mater. 169, 524–531.

[34] Gupta, S. S. and K.G. Bhattacharyya, (2005). Interaction of metal ions with clays: A case study with Pb (II). Appl. Clay Sci., 30: 199-208.
[35] Nisaa S. (2011). Adsorpsi biru metilena pada kaolin dan nanokomposit

kaolin TiO2 serta uji sifat fotokatalis. [skripsi]. Bogor: Fakultas

Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor.
[36] Armaroli T., Simon L. J., Digne M., Montanari T., Bevilacqua M., Valtchev V., Patarin J., Busca G. (20016). Effects of crystal size and Si/Al ratio on the surface properties of H-ZSM-5 zeolites. Appl. Catal A Gen.

[37] Mohamed, M., O.A. Fouad, A.A. Ismail, I.A. Ibrahim. (2005). Influence

of crystallization times on the synthesis of nanosized ZSM-5, Mater. Lett.

[38] Somani, O. G,. Anant L. Choudhari, Bandaru Sarva Rao, S.P. Mirajkar.

(2006). Enhancement of crystallization rate by microwave radiation:

Synthesis of ZSM-5. Mater. Chem. Phys. 82(3):538-545.
[39] Adamson, A.W., (1990), Physical chemistry of surface, 5th ed., John

Willey &. Sons, New York.
[40] Yahya, S. A., Musa, I. E., Amjad, H. E., and Gavin, M. W. (2008). Effect

of solution pH, ionic strength, and temperature on adsorption behavior of

reactive dyes on activated carbon. Dyes Pigm., 77: 16–23.
[41] Ajemba, R.O. (2014). Assessing influence of hydrochloric acid leaching on structural changes and bleaching performance of Nigerian clay from

Udi Optim. Isotherm Kinet. Stud., 27: 839–854.
[42] Gercel, O., Ozcan, A., Ozcan, A.S., and Gercel, H.F. (2007). Preparation

of activated carbon from a renewable bio-plant of Euphorbia rigida by H2SO4 activation and its adsorption behavior in aqueous solutions. Appl. Surf. Sci. 253: 4843–4852

[43] Wu, F.C., Tseng, R.I., and Jung, R.S. (2001). Kinetic modeling of liquid- phase adsorption of reactive dyes and metal ions on chitosan. Water Res. 35: 613–618.

[44] Harni, Muhammad Rudy, Ani Iryani, Hilman Affandi. (2013).

Pemanfaatan serbuk gergaji kayu jati (tectona grandis l.f.) sebagai adsorben logam timbal (pb). Program Studi Kimia, FMIPA Universitas Pakuan, Bogor.

[45] Venkata, S., Mohan, N., Rao, C., and Karthikeyan, J. (2002). Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: a kinetic and mechanistic study. J. Hazard. Mater. 90: 189–204.

[46] Bello, O.S., Tan, T.S., and Ahmad, M.A. (2011). Utilization of cocoa pod husk for the removal of remazol black B reactive dye from aqueous solutions: Kinetic, equilibrium and thermodynamic studies. Asia-Pac. J. Chem. Eng. 7: 378–388.

[47] Tan, I.A.W., Ahmad, A.L., and Hameed, B.H. (2008). Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. Desalination 225: 13–28.