Bibliography |
: |
Anggi Mahesa, F., and Pelita Nusantara, S. (2021). Expert System for Diagnosing Epilepsy Using the Dempster Shafer Method. National Journal of Computing and Information Technology, 4(6).
Anwar, H., Khan, Q. U., Nadeem, N., Pervaiz, I., Ali, M., and Cheema, F. F. (2020). Epileptic seizures. Discoveries, 8(2), e110. https://doi.org/10.15190/d.2020.7.
Batubara, Hamdan. (2018). Web-based learning with Moodle version 3.4. 10.13140/RG.2.2.20230.88643.
Caley, M. J., O’Leary, R. A., Fisher, R., Low-Choy, S., Johnson, S., and Mengersen, K. (2014). What is an expert? A systems perspective on expertise. Ecology and Evolution, 4(3), 231–242. https://doi.org/10.1002/ece3.926.
Damodaran B, D., Salim, S., and Vargese, S. M. (2016). Performance Evaluation of MySQL and MongoDB Databases. International Journal on Cybernetics and Informatics, 5(2), 387–394. https://doi.org/10.5121/ijci.2016.5241.
Fadhilah, M. R., and Triayudi, A. (2024). Application of the Dempster Shafer Method in Diagnosing Pneumonia. Scientific Study of Informatics and Computers, 4(4), 2169–2178. https://doi.org/10.30865/klik.v4i4.1734.
Fadhilah, M. R., and Triayudi, A. (2024). Comparison of the Dempster Shafer Method and Certainty Factor in an Expert System for Detecting Coronary Heart Disease. Scientific Study of Informatics and Computers, 4(4), 2253–2261. https://doi.org/10.30865/klik.v4i4.1624.
Johan, T. M. (2021). Epilepsy Detection System Using the K-Means Clustering Algorithm as an Expert System-Based Disease Detector During the Covid-19 Pandemic. TIKA Journal, 6(2), 120–130. https://doi.org/10.51179/tika.v6i02.477.
Kaur, T., Diwakar, A., Kirandeep, Mirpuri, P., Tripathi, M., Chandra, P., and Gandhi, T. (2021). Artificial Intelligence in Epilepsy. In Neurology India, 69(3), 560–566. https://doi.org/10.4103/0028-3886.317233.
Kusuma, R. P., and Nas, C. (2023). Expert System to Diagnose Mental Health Disorders Using the Dempster Shafer Algorithm. Journal of Information Systems and Informatics, 5(1), 391–406. https://doi.org/10.51519/journalisi.v5i1.461.
Mandasari, F., Antoni, and Haramaini, T. (2022). Application of Epliepsy Diagnosis using the Certainty Factor Method at the Pinang City Regional General Hospital. Bulletin of Computer Science Research, 2(3), 93–99. https://doi.org/10.47065/bulletincsr.v2i3.171.
Muqorobin, and Nendy Akbar Rozaq Rais. (2022). Comparison of PHP Programming Language with Codeigniter Framework in Project CRUD. International Journal of Computer and Information System, 3(3). https://ijcis.net/index.php/ijcis/index.
Mustaqim, M., Rakasiwi, G., and Iskandar, A. (2024). Comparison of the Dempster Shafer Method and Bayes' Theorem for Detecting Encephalitis. Budidarma Informatics Media Journal, 8(1), 546-554. https://doi.org/10.30865/mib.v8i1.7339.
Patel, S., Sayyed, A., and P.P, B. (2017). Smart Attendance Application Using Android and PHP. IJARCCE, 6(3), 226–231. https://doi.org/10.17148/ijarcce.2017.6351.
Poikolainen, Karl. (1979). A comment diagnosis as a means of health forecasting. Social Science and Medicine. Part A: Medical Psychology and Medical Sociology, 13, 165-166. https://doi.org/10.1016/0271-7123(79)90023-3.
Purwanti, E., Achmadi, N. W., Ernawati, and Bustomi, M. A. (2021). Expert System Using Dempster Shafer Method for Pre- Eclampsia Detection. Journal of Physics: Conference Series, 1805(1). https://doi.org/10.1088/1742-6596/1805/1/012030.
Singh, Gagandeep, and Josemir W. Sander. (2020). The global burden of epilepsy report: Implications for low- and middle-income countries. Epilepsy and Behavior, 105, 1525-5050. https://doi.org/10.1016/j.yebeh.2020.106949.
Susilawati, I., and Simanullang, R. Y. (2023). Expert System for Identifying ITP (Idiopathic Thrombocytopenic Purpura) using the Dempster Shafer Approach. Journal of Computer Science and Information Technology, 1(3), 17–24.
Tkatek, S., Belmzoukia, A., Nafai, S., Abouchabaka, J., and Ibnou-Ratib, Y. (2020). Putting the world back to work: An expert system using big data and artificial intelligence in combating the spread of COVID-19 and similar contagious diseases. Work, 67(3), 557–572. https://doi.org/10.3233/wor-203309.
|