Repository Universitas Pakuan

Detail Karya Ilmiah Dosen

Teguh Puja Negara, Husin Alatas, Agah Garnadi, Sri Nurdiati

Judul : Transmission characteristics of a microscale dielectric slab waveguidedevice with a deep groove and an embedded metallodielectric gratingat low terahertz frequency
Abstrak :

We discuss the transmission characteristics of a microscale dielectric waveguide device with a deepgroove and an embedded metallodielectric grating illuminated by a continuous wave of TM and TE modesat low terahertz frequency. To study its performance we solve numerically the corresponding Maxwellequations by means of finite difference time domain method with uniaxial perfectly match layer as itsboundary condition. By varying the angle of incident, grating filling factor and refractive index of analytein the deep groove, it is found that the device exhibits a significant transmission enhancement for the TMmode due to the existence of surface plasmon interaction. We also demonstrate its potential applicationas a biosensor device.

Tahun : 2018 Media Publikasi : Jurnal Internasional
Kategori : Jurnal No/Vol/Tahun : 13 / 125 / 2014
ISSN/ISBN : 0030-4026
PTN/S : Universitas Pakuan Program Studi : ILMU KOMPUTER
Bibliography :

[1] M.I. Stockman, Nanoplasmonics: past, present, and glimpse into future, Opt.Express 19 (2011) 22029–22106.[2] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings,Springer, Berlin, 1988.[3] M. Maisonneuve, O. d’Allivy Kelly, A.-P. Blanchard-Dionne, S. Patskovsky, M.Meunier, Phase sensitive sensor on plasmonic nanograting structures, Opt.Express 19 (2011) 26318–26324.[4] O. Krupin, H. Asiri, C. Wang, R.N. Tait, P. Berini, Biosensing using straight long-range surface plasmon waveguides, Opt. Express 21 (2013) 698–709.[5] K. Toma, J. Dostalek, W. Knoll, Long-range surface plasmon-coupled flu-orescence emission for biosensor applications, Opt. Express 19 (2011)11090–11099.[6] H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miya-maru, K. Kawase, Terahertz sensing method for protein detection using a thinmetallic mesh, Appl. Phys. Lett. 91 (2007) 253901.[7] W.T. Kung, Y.H. Pai, Y.K. Hsu, C.H. Lin, C.M. Wang, Surface plasmonassisted CuxO photocatalyst for pure water splitting, Opt. Express 21 (2013)A221–A228.[8] C. Perrotton, R.J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam,P. Meyrueis, A reliable, sensitive and fast optical fiber hydrogen sensor basedon surface plasmon resonance, Opt. Express 21 (2013) 382–390.[9] A. Hassani, M. Skorobogatiy, Surface plasmon resonance-like integrated sen-sor at terahertz frequencies for gaseous analytes, Opt. Express 16 (2008)20206–20214.[10] A. Karar, N. Das, C.L. Tan, K. Alameh, Y.T. Lee, Design of high-sensitivityplasmonics-assisted GaAs metal-semiconductor-metal photodetectors, IEEEProc. 138 (2010) 19–21.[11] M.W. Kim, T.T. Kim, J.E. Kim, H.Y. Park, Surface plasmon polariton resonanceand transmission enhancement of light through subwavelength groove arraysin metallic films, Opt. Express 17 (2009) 12315–12322.[12] B. Wang, Y. Jin, S. He, Design of subwavelength corrugated metal waveguidesfor slow waves at terahertz frequencies, Appl. Opt. 47 (2008) 3694–3700.[13] U. Schröter, D. Heitmann, Surface-plasmon-enhanced transmission throughmetallic gratings, Phys. Rev. B 58 (1998) 15419–15421.[14] J. Xu, K.W. Plaxco, S.J. Allen, Probing the collective vibrational dynamics of aprotein in liquid water by terahertz absorption spectroscopy, Protein Sci. 15(2006) 1175–1181.[15] A. Taflove, S.C. Hagness, Computational Electromagnetics: The Finite DifferenceTime Domain Method, Artech House, Boston, 2000.[16] Y. Todorov, L. Tosetto, J. Teissier, A.M. Andrews, P. Klang, R. Colombelli, I. Sagnes,G. Strasser, C. Sirtori, Optical properties of metal-dielectric-metal microcavitiesin the THz frequency range, Opt. Express 18 (2010) 13886–13907.[17] J.ˇCtyrok´Y, F. Abdelmalek, W. Ecke, K. Usbeck, Modelling of the surface plasmonresonance waveguide sensor with Bragg grating, Opt. Quantum Electron. 31(1999) 927–941.