Repository Universitas Pakuan

Detail Karya Ilmiah Dosen

Leny Heliawati, Dikdik Kurnia, Eti Apriyanti, Putri Nabila Adinda Adriansyah ,Sun Theo Constan Lotebulo Ndruru

Judul : Natural Cycloartane Triterpenoids from Corypha utan Lamk. with Anti- cancer Activity towards P388 Cell Lines and their Predicted Interaction with FLT3
Abstrak :

ABSTRACT

Background: Cancer is the second leading cause of death in the world. Leukemia is a type of cancer that accounts for 31.5% of all cancers in children under the age of 15 in industrialized countries and 15.7% in developing countries. The inhibition of FMS-like tyrosine kinase 3 (FLT3) is a suitable approach for acute myeloid leukemia (AML) therapy as it is overexpressed in AML.

Aim and Objective: This study intends to explore the natural constituents from the bark of Corypha utan Lamk., and assess their cytotoxicity on murine leukemia cell lines (P388) in addition to predicting their interaction with FLT3 as a studied target by computational methods.

Methods: Compounds 1 and 2 were isolated from Corypha utan Lamk using the stepwise radial chromatography method. These compounds were assessed for their cytotoxicity against Artemia salina using the BSLT and P388 cells and the MTT assay. The docking simulation was employed to predict the possible interaction between triterpenoid and FLT3.

Results: Isolation from the bark of C. utan Lamk. generated two triterpenoids, cycloartanol (1) and cycloartanone (2). Based on the in vitro and in silico studies, both compounds were found to have anticancer activity. The evaluation of cytotoxicity from this study reveals that cycloartanol (1) and cycloartanone (2) could inhibit P388 cell growth (IC50 value at 102.6 and 110.0 µg/mL, respectively). The binding energy of cycloartanone was -9.94 Kcal/mol with a Ki value of 0.051 µM, while the binding energy and Ki value of cycloartanol (1) were found to be 8.76 Kcal/mol and 0.38 µM, respectively. These compounds also demonstrate a stable interaction by forming hydrogen bonds with FLT3.

Conclusion: Cycloartanol (1) and cycloartanone (2) exhibit potency as anticancer agents by inhibiting P388 cells in vitro and the FLT3 gene in silico.

 

Keywords: Corypha utan Lamk., Cycloartane triterpenoids, Acute myeloid leukemia, FLT3.

Tahun : 2023 Media Publikasi : Jurnal Internasional
Kategori : Jurnal No/Vol/Tahun : 15 / 26 / 2023
ISSN/ISBN : 1386-2073
PTN/S : Universitas Pakuan Program Studi : PENDIDIKAN ILMU PENGETAHUAN ALAM
Bibliography :

  1. Elhady, S.S.; Eltamany, E.E.; Shaaban, A.E.; Bagalagel, A.A.; Muhammad, Y.A.; El-Sayed, N.M.; Ayyad, S.N.; Ahmed, A.A.M.; Elgawish, M.S.; Ahmed, S.A. Jaceidin flavonoid isolated from Chiliadenus montanus attenuates tumor progression in mice via vegf inhibition: In vivo and in silico studies. Plants, 2020, 9(8), 1031.http://dx.doi.org/10.3390/plants9081031 PMID: 32823927
  2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. http://dx.doi.org/10.3322/caac.21660 PMID: 33538338
  3. Vora, H.H.; Shukla, S.N.; Brahambhatt, B.V.; Mehta, S.H.; Patel, N.A.; Parikh, S.K.; Shah, K.N.; Shah, P.M. Clinical relevance of FLT3 receptor protein expression in Indian patients with acute leu- kemia. Asia Pac. J. Clin. Oncol., 2010, 6(4), 306-319. http://dx.doi.org/10.1111/j.1743-7563.2010.01322.x PMID: 21114781
  4. Suzanna, E. Sirait, T.; Rahayu, P.S.; Shalmont, G.; Anwar, E.; Andalusia, R.; Harjati; Panigoro, S.S. Registrasi kanker berbasis rumah sakit di rumah sakit kanker dharmais. Pusat kanker nasional. Ind. J. Cancer, 2012, 6, 181-196. http://dx.doi.org/10.33371/ijoc.v6i4.299
  5. Hwang, D.; Kim, M.; Park, H.; Jeong, M.I.; Jung, W.; Kim, B. Natural products and acute myeloid leukimia: A review highlight- ing mechanisms of action. Nutrients, 2019, 11(5), 1010. http://dx.doi.org/10.3390/nu11051010 PMID: 31058874
  6. Yang, X.; Wang, J. Precision therapy for acute myeloid leukemia. J. Hematol. Oncol., 2018, 11(1), 3. http://dx.doi.org/10.1186/s13045-017-0543-7 PMID: 29301553
  7. Liao, D.; Wang, M.; Liao, Y.; Li, J.; Niu, T. A review of efficacy and safety of checkpoint inhibitor for the treatment of acute mye- loid leukemia. Front. Pharmacol., 2019, 10, 609. http://dx.doi.org/10.3389/fphar.2019.00609 PMID: 31244654
  8. Garg, M.; Nagata, Y.; Kanojia, D.; Mayakonda, A.; Yoshida, K.; Haridas Keloth, S.; Zang, Z.J.; Okuno, Y.; Shiraishi, Y.; Chiba, K.; Tanaka, H.; Miyano, S.; Ding, L.W.; Alpermann, T.; Sun, Q.Y.; Lin, D.C.; Chien, W.; Madan, V.; Liu, L.Z.; Tan, K.T.; Sampath, A.; Venkatesan, S.; Inokuchi, K.; Wakita, S.; Yamaguchi, H.; Chng, W.J.; Kham, S.K.Y.; Yeoh, A.E.J.; Sanada, M.; Schiller, J.; Kreuzer, K.A.; Kornblau, S.M.; Kantarjian, H.M.; Haferlach, T.; Lill, M.; Kuo, M.C.; Shih, L.Y.; Blau, I.W.; Blau, O.; Yang, H.; Ogawa, S.; Koeffler, H.P. Profiling of somatic mutations in acutemyeloid leukemia with FLT3-ITD at diagnosis and relapse. Blood, 2015, 126(22), 2491-2501.http://dx.doi.org/10.1182/blood-2015-05-646240 PMID: 26438511
  9. Lucas, D.; Scheiermann, C.; Chow, A.; Kunisaki, Y.; Bruns, I.; Barrick, C.; Tessarollo, L.; Frenette, P.S. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat. Med., 2013, 19(6), 695-703.http://dx.doi.org/10.1038/nm.3155 PMID: 23644514
  10. May, J.E.; Donaldson, C.; Gynn, L.; Morse, H.R. Chemotherapy- induced genotoxic damage to bone marrow cells: long-term impli- cations. Mutagenesis, 2018, 33(3), 241-251. http://dx.doi.org/10.1093/mutage/gey014 PMID: 30239865
  11. Bhujbal, S.P.; Keretsu, S.; Cho, S.J. Design of new therapeutic agents targeting FLT3 receptor tyrosine kinase using molecular docking and 3D-QSAR approach. Lett. Drug Des. Discov., 2020, 17(5), 585-596. http://dx.doi.org/10.2174/1570180816666190618104632
  12. Zorn, J.A.; Wang, Q.; Fujimura, E.; Barros, T.; Kuriyan, J. Crystal structure of the FLT3 kinase domain bound to the inhibitor Quizar- tinib (AC220). PLoS One, 2015, 10(4), e0121177. http://dx.doi.org/10.1371/journal.pone.0121177 PMID: 25837374
  13. Sudhindra, A.; Smith, C.C. FLT3 inhibitors in AML: are we there yet? Curr. Hematol. Malig. Rep., 2014, 9(2), 174-185. http://dx.doi.org/10.1007/s11899-014-0203-8 PMID: 24682858
  14. Jarusiewicz, J.A.; Jeon, J.Y.; Connelly, M.C.; Chen, Y.; Yang, L.; Baker, S.D.; Guy, R.K. Discovery of a diaminopyrimidine FLT3 inhibitor active against acute myeloid leukemia. ACS Omega,  2017, 2(5), 1985-2009. http://dx.doi.org/10.1021/acsomega.7b00144 PMID: 28580438
  15. Ji, H.F.; Li, X.J.; Zhang, H.Y. Natural products and drug discovery. EMBO Rep., 2009, 10(3), 194-200. http://dx.doi.org/10.1038/embor.2009.12 PMID: 19229284
  16. Katz, L.; Baltz, R.H. Natural product discovery: past, present, and future. J. Ind. Microbiol. Biotechnol., 2016, 43(2-3), 155-176. http://dx.doi.org/10.1007/s10295-015-1723-5 PMID: 26739136
  17. Karakaya, S.; Koca, M.; Yilmaz, S.; Yildirim, K.; Pinar, N.; Demirci, B.; Brestic, M.; Sytar, O. Molecular docking studies of coumarins isolated from extracts and essential oils of Zosima ab- sinthifolia link as potential inhibitors for Alzheimer’s disease. Mol- ecules, 2019, 24(4), 722. http://dx.doi.org/10.3390/molecules24040722 PMID: 30781573
  18. Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long his- tory. J. Ethnopharmacol., 2018, 227, 300-315. http://dx.doi.org/10.1016/j.jep.2018.09.004 PMID: 30205181
  19. Kurnia, D.; Hutabarat, G.S.; Windaryanti, D.; Herlina, T.; Herdi- yati, Y.; Satari, M.H. Potential allylpyrocatechol derivatives as an- tibacterial agent against oral pathogen of S. sanguinis ATCC 10,556 and as inhibitor of MurA Enzymes: In vitro and in silico study. Drug Des. Devel. Ther., 2020, 14, 2977-2985. http://dx.doi.org/10.2147/DDDT.S255269 PMID: 32801638
  20. Darwati, D.; Safitri, A.N.; Ambardhani, N.; Mayanti, T.; Nurlelasa- ri, N.; Kurnia, D. Effectiveness and anticancer activity of a novel phenolic compound from Garcinia porrecta against the mcf-7 breast cancer cell line in vitro and in silico. Drug Des. Devel.  Ther., 2021, 15, 3523-3533. http://dx.doi.org/10.2147/DDDT.S321824 PMID: 34408404
  21. Abdelhameed, R.; Elgawish, M.S.; Mira, A.; Ibrahim, A.K.; Ah- med, S.A.; Shimizu, K.; Yamada, K. Anti-choline esterase activity of ceramides from the Red Sea marine sponge Mycale euplectel- lioides. RSC Advances, 2016, 6(24), 20422-20430. http://dx.doi.org/10.1039/C5RA26424C
  22. Lin, X.; Li, X.; Lin, X. A review on applications of computational methods in drug screening and design. Molecules, 2020, 25(6), 1375.http://dx.doi.org/10.3390/molecules25061375 PMID: 32197324
  23. Marica Bakovic, N.H. Biologically active triterpenoids and their cardioprotective and anti-inflammatory effects. J. Bioanal. Bio- med., 2015, 1(s12)http://dx.doi.org/10.4172/1948-593X.S12-005
  24. Ma, L.; Zhang, M.; Zhao, R.; Wang, D.; Ma, Y.; Ai, L. Plant natu- ral products: Promising resources for cancer chemoprevention. Molecules, 2021, 26(4), 933http://dx.doi.org/10.3390/molecules26040933 PMID: 33578780
  25. Chen, F.; Liu, D.L.; Wang, W.; Lv, X.M.; Li, W.; Shao, L.D.; Wang, W.J. Bioactive triterpenoids from Sambucus javanica Blume. Nat. Prod. Res., 2020, 34(19), 2816-2821. http://dx.doi.org/10.1080/14786419.2019.1596092          PMID: 30968700
  26. Patlolla, J.M.; Rao, C.V. Triterpenoids for cancer prevention and treatment: current status and future prospects. Curr. Pharm. Bio- technol., 2012, 13(1), 147-155. http://dx.doi.org/10.2174/138920112798868719 PMID: 21466427
  27. Sultana, N.; Saeed Saify, Z. Naturally occurring and synthetic agents as potential anti-inflammatory and immunomodulants. Anti- inflamm. Antiallergy Agents Med. Chem., 2012, 11(1), 3-19. http://dx.doi.org/10.2174/187152312803476264 PMID: 22934748
  28. Zhao, X.; Liu, M.; Li, D. Oleanolic acid suppresses the prolifera- tion of lung carcinoma cells by miR-122/Cyclin G1/MEF2D axis. Mol. Cell. Biochem., 2015, 400(1-2), 1-7. http://dx.doi.org/10.1007/s11010-014-2228-7 PMID: 25472877
  29. Bishayee, A.; Ahmed, S.; Brankov, N.; Perloff, M. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front. Biosci., 2011, 16(1), 980-996. http://dx.doi.org/10.2741/3730 PMID: 21196213
  30. Ren, Y.; Kinghorn, A.D. Natural product triterpenoids and their semi-synthetic derivatives with potential anticancer activity. Planta Med., 2019, 85(11/12), 802-814.http://dx.doi.org/10.1055/a-0832-2383 PMID: 30658371
  31. Li, S.; Kuo, H.C.D.; Yin, R.; Wu, R.; Liu, X.; Wang, L.; Hudlikar, R.; Peter, R.M.; Kong, A.N. Epigenetics/epigenomics of triterpe- noids in cancer prevention and in health. Biochem. Pharmacol., 2020, 175, 113890.http://dx.doi.org/10.1016/j.bcp.2020.113890 PMID: 32119837
  32. Pan, L.; Yong, Y.; Deng, Y.; Lantvit, D.D.; Ninh, T.N.; Chai, H.; Carcache de Blanco, E.J.; Soejarto, D.D.; Swanson, S.M.; King- horn, A.D. Isolation, structure elucidation, and biological evalua- tion of 16,23-epoxycucurbitacin constituents from Eleaocarpus chinensis. J. Nat. Prod., 2012, 75(3), 444-452. http://dx.doi.org/10.1021/np200879p PMID: 22239601
  33. Ren, Y.; Anaya-Eugenio, G.D.; Czarnecki, A.A.; Ninh, T.N.; Yu- an, C.; Chai, H.B.; Soejarto, D.D.; Burdette, J.E.; de Blanco, E.J.C.; Kinghorn, A.D. Cytotoxic and NF-?B and mitochondrial transmembrane potential inhibitory pentacyclic triterpenoids from Syzygium corticosum and their semi-synthetic derivatives. Bioorg. Med. Chem., 2018, 26(15), 4452-4460. http://dx.doi.org/10.1016/j.bmc.2018.07.025 PMID: 30057155
  34. Tung, N.H.; Song, G.Y.; Minh, C.V.; Kiem, P.V.; Jin, L.G.; Boo, H.J.; Kang, H.K.; Kim, Y.H. Steamed ginseng-leaf components enhance cytotoxic effects on human leukemia HL-60 cells. Chem. Pharm. Bull. (Tokyo), 2010, 58(8), 1111-1115. http://dx.doi.org/10.1248/cpb.58.1111 PMID: 20686271
  35. Tuchinda, P.; Kornsakulkarn, J.; Pohmakotr, M.; Kongsaeree, P.; Prabpai, S.; Yoosook, C.; Kasisit, J.; Napaswad, C.; Sophasan, S.; Reutrakul, V. Dichapetalin-type triterpenoids and lignans from the aerial parts of Phyllanthus acutissima. J. Nat. Prod., 2008, 71(4), 655-663.http://dx.doi.org/10.1021/np7007347 PMID: 18271551
  36. Nandika, D.; Darmawan, W.; Karlinasari, L.; Hadi, Y.S.; Abdillah, I.B.; Hiziroglu, S. Evaluation of color change and biodeterioration resistance of Gewang (Corypha utan Lamk.) wood. Appl. Sci. (Ba- sel), 2020, 10(21), 7501.http://dx.doi.org/10.3390/app10217501
  37. Heliawati, L.; Kardinan, A.; Mayanti, T.; Tjokronegoro, R. ati Piceatanol: Anti-cancer compound from Gewang seed extract. J. Appl. Pharm. Sci., 2015, 5, 110-113. http://dx.doi.org/10.7324/JAPS.2015.50119
  38. Waghulde, S.; Kale, M.K.; Patil, V. Brine shrimp lethality assay of the aqueous and ethanolic extracts of the selected species of medic- inal plants. Proceedings, 2019, 41, 47. http://dx.doi.org/10.3390/ecsoc-23-06703
  39. Aykul, S.; Martinez-Hackert, E. Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis. Anal. Biochem., 2016, 508, 97-103. http://dx.doi.org/10.1016/j.ab.2016.06.025 PMID: 27365221
  40. Bell, E.W.; Zhang, Y. DockRMSD: an open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. J. Cheminform., 2019, 11(1), 40. http://dx.doi.org/10.1186/s13321-019-0362-7 PMID: 31175455
  41. Kim, N.; Park, S.; Nhiem, N.X.; Song, J.H.; Ko, H.J.; Kim, S.H. Cycloartane-type triterpenoid derivatives and a flavonoid glycoside from the burs of Castanea crenata. Phytochemistry, 2019, 158, 135-141.http://dx.doi.org/10.1016/j.phytochem.2018.11.001  PMID: 30529974
  42. Baniadam, S.; Rahiminejad, M.R.; Ghannadian, M.; Saeidi, H.; Ayatollahi, A.M.; Aghaei, M. Cycloartane triterpenoids from Eu- phorbia macrostegia with their cytotoxicity against MDA- MB48 and MCF-7 cancer cell lines. Iran. J. Pharm. Res., 2014, 13(1), 135-141 http://dx.doi.org/10.22037/ijpr.2014.1419 PMID: 24734064
  43. Yadav, V.R.; Prasad, S.; Sung, B.; Kannappan, R.; Aggarwal, B.B. Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins (Basel), 2010, 2(10), 2428-2466. http://dx.doi.org/10.3390/toxins2102428 PMID: 22069560
  44. Thanh, L.N.; Thoa, H.T.; Oanh, N.T.T.; Giap, T.H.; Quyen, V.T.; Ha, N.T.T.; Phuong, D.T.L.; Lien, N.T.P.; Hang, N.T.M. Cycloar- tane triterpenoids and biological activities from the propolis of thestingless bee Lisotrigona furva. Vietnam J. Chem., 2021, 59, 426-430 http://dx.doi.org/10.1002/vjch.201900143
  45. Kennedy, V.E.; Smith, C.C. FLT3 Mutations in acute myeloid leukemia: Key concepts and emerging controversies. Front. On- col., 2020, 10, 612880.http://dx.doi.org/10.3389/fonc.2020.612880 PMID: 33425766
  46. Wiji Prasetyaningrum, P.; Bahtiar, A.; Hayun, H. Synthesis and cytotoxicity evaluation of novel asymmetrical mono-carbonyl ana- logs of curcumin (AMACs) against vero, HeLa, and MCF7 cell lines. Sci. Pharm., 2018, 86(2), 25. http://dx.doi.org/10.3390/scipharm86020025 PMID: 29880783
  47. Arcanjo, D.; Albuquerque, A.; Melo-Neto, B.; Santana, L.; Medei- ros, M.G.F.; Citó, A. Bioactivity evaluation against Artemia salina Leach of medicinal plants used in Brazilian Northeastern folk med- icine. Braz. J. Biol., 2012, 72(3), 505-509. http://dx.doi.org/10.1590/S1519-69842012000300013   PMID: 22990821
  48. Meyer, B.; Ferrigni, N.; Putnam, J.; Jacobsen, L.; Nichols, D.; McLaughlin, J. Brine Shrimp: A convenient general bioassay for active plant constituents. Planta Med., 1982, 45(5), 31-34. http://dx.doi.org/10.1055/s-2007-971236
  49. Rahman, M.A.; Ramli, F.; Karimian, H.; Dehghan, F.; Nordin, N.; Mohd Ali, H.; Mohan, S.; Mohd Hashim, N. Artonin E induces apoptosis via mitochondrial dysregulation in SKOV-3 ovarian can- cer cells. PLoS One, 2016, 11(3), e0151466. http://dx.doi.org/10.1371/journal.pone.0151466 PMID: 27019365
  50. Etti, I.; Rasedee, A.; Mohd Hashim, N.; Bustamam Bin Abdul, A.; Abdul Kadir, A.; Yeap, S.K.; Waziri, P.; Malami, I.; Lim, K.L.; Et- ti, C. Artonin E induces p53-independent G1 cell cycle arrest and apoptosis through ROS-mediated mitochondrial pathway and livin suppression in MCF-7 cells. Drug Des. Devel. Ther., 2017, 11, 865-879. http://dx.doi.org/10.2147/DDDT.S124324 PMID: 28356713
  51. Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des., 2011, 7(2), 146-157. http://dx.doi.org/10.2174/157340911795677602 PMID: 21534921
  52. Chen, G.; Seukep, A.J.; Guo, M. Recent advances in molecular docking for the research and discovery of potential marine drugs. Mar. Drugs, 2020, 18(11), 545. http://dx.doi.org/10.3390/md18110545 PMID: 33143025
  53. Musthapa, I.; Latip, J.; Takayama, H.; Juliawaty, L.D.; Hakim, E.H.; Syah, Y.M. Prenylated flavones from Artocarpus lanceifolius and their cytotoxic properties against P-388 cells. Nat. Prod. Com- mun., 2009, 4(7), 1934578X0900400. http://dx.doi.org/10.1177/1934578X0900400710 PMID: 19731595
  54. Zhu, R.; Li, L.; Nguyen, B.; Seo, J.; Wu, M.; Seale, T.; Levis, M.; Duffield, A.; Hu, Y.; Small, D. FLT3 tyrosine kinase inhibitors synergize with BCL-2 inhibition to eliminate FLT3/ITD acute leukemia cells through BIM activation. Signal Transduct. Target. Ther., 2021, 6(1), 186.http://dx.doi.org/10.1038/s41392-021-00578-4 PMID: 34024909
  55. Gupta, A.; Chaudhary, N.; Kakularam, K.R.; Pallu, R.; Polamara- setty, A. The augmenting effects of desolvation and conformational energy terms on the predictions of docking programs against mPGES-1. PLoS One, 2015, 10(8), e0134472. http://dx.doi.org/10.1371/journal.pone.0134472 PMID: 26305898
  56. Cao, H.; Hu, H.; Colagiuri, B.; Liu, J. Medicinal cupping therapy  in 30 patients with fibromyalgia: a case series observation. Forsch. Komplement. Med., 2011, 18(3), 3. http://dx.doi.org/10.1159/000329329 PMID: 21701180
  57. Vargas, J.A.R.; Lopez, A.G.; Piñol, M.C.; Froeyen, M. Molecular docking study on the interaction between 2-substituted-4,5-difuryl Imidazoles with different Protein Target for antileishmanial activi- ty. J. Appl. Pharm. Sci., 2018, 8, 14-22. http://dx.doi.org/10.7324/JAPS.2018.8303
  58. Maulana Hidayatullah, I.; Setiadi, T.; Tri Ari Penia Kresnowati, M.; Boopathy, R. Xylanase inhibition by the derivatives of ligno- cellulosic material. Bioresour. Technol., 2020, 300, 122740. http://dx.doi.org/10.1016/j.biortech.2020.122740 PMID: 31952895
  59. Vepuri, S.B.; Anbazhagan, S.; Divya, D.; Padmin, D. A review on supramolecular chemistry in drug design and formulation research. Indones. J. Pharm., 2013, 24, 131-150.http://dx.doi.org/10.14499/INDONESIANJPHARM0ISS0PP131- 150
  60. Katragadda, M.; Magotti, P.; Sfyroera, G.; Lambris, J.D. Hydro- phobic effect and hydrogen bonds account for the improved activi- ty of a complement inhibitor, compstatin. J. Med. Chem., 2006, 49(15), 4616-4622.http://dx.doi.org/10.1021/jm0603419 PMID: 16854067
  61. Sashidhara, K.V.; Singh, S.P.; Kant, R.; Maulik, P.R.; Sarkar, J.; Kanojiya, S.; Ravi Kumar, K. Cytotoxic cycloartane triterpene and rare isomeric bisclerodane diterpenes from the leaves of Polyalthia longifolia var. pendula. Bioorg. Med. Chem. Lett., 2010, 20(19), 5767-5771.http://dx.doi.org/10.1016/j.bmcl.2010.07.141 PMID: 20732814
  62. Choodej, S.; Pudhom, K. Cycloartane triterpenoids from the leaves of Euphorbia neriifolia. Phytochem. Lett., 2020, 35, 1-5. http://dx.doi.org/10.1016/j.phytol.2019.10.005
  63. Nair, A.N.S.; Nair, R.V.R.; Nair, A.P.R.; Nair, A.S.; Thyagarajan, S.; Johnson, A.J.; Baby, S. Antidiabetes constituents, cycloartenol and 24-methylenecycloartanol, from Ficus krishnae. PLoS One, 2020, 15(6), e0235221. http://dx.doi.org/10.1371/journal.pone.0235221 PMID: 32584888

URL : -

 

Document

 
back