Repository Universitas Pakuan

Detail Karya Ilmiah Dosen

Anisa Lisna Yusniyanti, Fitria Virgantari, Yasmin Erika Faridhan

Judul : Journal of Physics: Conference Series
Abstrak :

This study compares two clustering methods, i.e. average linkage and K-means, in grouping Indonesia’s provinces based on welfare indicators in education, health, and income. Data from Statistics Indonesia (BPS) covering Indonesia’s 34 provinces are used. Welfare variables exercised in this study are population, rate of population with government-assisted health covers, morbidity rate, human development index, expense rate per capita, and rate of the population aged 15 or over who graduated from junior high school (completed Year 9). Results show that the average linkage method generates three clusters; the first cluster of which consists of 32 provinces, while the second and third clusters each consist of only one province. On the other hand, the K-means method is set to generate equally three clusters. Unlike the first method, K-means’s first cluster, in this case, consists of 14 provinces, while its second and thirds clusters consist of 13 and 7 provinces, respectively. Performances of both methods are measured using the variance ratio. The average linkage and k-means cluster methods yield variance ratios of 0.08275 and 0.28881, respectively. Based on these criteria, the average linkage method is shown to exercise a better performance due to its smaller variance ratio. 

Tahun : 2021 Media Publikasi : Jurnal Internasional
Kategori : Jurnal No/Vol/Tahun : 1863 / 1 / 2021
PTN/S : Universitas Pakuan Program Studi : MATEMATIKA
Bibliography :

[1] Worldometers 2020 Indonesian Population [Accessed on 15th October 2020]

[2] Stiglitz J E, Sen A and Fitoussi J -P 2009 Report by the Commission on the measurement of economic performance and social progress Commission on the Measurement of Economic Performance and Social Progress, Mimeo

[3] BPS 2018 Statistik Kesejahteraan Rakyat 2018 (Jakarta:Badan Pusat Statistik)

[4] Hirschberg J G, Maasoumi E and Slottje D J 1991 Cluster analysis for measuring welfare and quality of life across countries J. Econometrics 50 131-50

[5] Luzzi G F, Flückiger Y and Weber S 2008 A cluster analysis of multidimensional poverty in Switzerland Quantitative Approaches to Multidimensional Poverty Measurement, ed Kakwani N and Silber J (London:Palgrave Macmillan) chapter 4 pp 63-79

[6] Yulianto S and Hidayatullah K H 2014 Analisis klaster untuk pengelompokan kabupaten/kota di provinsi Jawa Tengah berdasarkan indikator kesejahteraan rakyat Statistika 2 56-63

[7] Ramdhani F 2015 Pengelompokan provinsi di Indonesia berdasarkan karakteristik kesejahteraan rakyat menggunakan metode K-Means Cluster Gaussian 4 875-84

[8] Ma E W M and Chow T W S 2004 A new shifting grid clustering algorithm Pattern Recognition 37 503-514

[9] Mattjik A A and Sumertajaya I M 2011 Sidik Peubah Ganda (Bogor:IPB Press)

[10] Johnson R A and Wichern D W 2007 Applied Multivariate Statistical Analysis 6e (New Jersey:Prentice-Hall International)

[11] Berkhin P 2006 A survey of clustering data mining techniques Grouping Multidimensional Data (Berlin, Heidelberg: Springer) pp 25-71

[12] Nugroho S 2008 Statistik Multivariat Terapan (Bengkulu:UNIB Press)

[13] Ray S and Turi R H 1999 Determination of number of clusters in K-means clustering and application in colour image segmentation Proc. 4th Int. Conf. on Advances in Pattern Recognition and Digital Techniques pp 137-43

[14] Barakbah A R and Arai K 2004 Determining constraints of moving variance to find global ICMSDS 2020 Journal of Physics: Conference Series 1863 (2021) 012071 IOP Publishing doi:10.1088/1742-6596/1863/1/012071 9 optimum and make automatic clustering Proc. Industrial Electronics Seminar (IES) pp 409- 13

[15] BPS 2019a Indeks Pembangunan Manusia (Jakarta:Badan Pusat Statistik)

[16] BPS 2019b Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan dan Pedesaan Menurut Provinsi dan Kelompok Barang (rupiah) (Jakarta:Badan Pusat Statistik)

[17] BPS 2019c Statistik Indonesia 2019 (Jakarta:Badan Pusat Statistik)

[18] Dabbura I 2018 K-Means Clustering: Algorithms, Applications, Evaluations Methods, and Drawbacks [Accessed on 17th October 2020]