Repository Universitas Pakuan

Detail Karya Ilmiah Dosen

Djoko Hartanto, Grace Yuhaneka, Wahyu Prasetyo Utomo, Ade Irma Rozafia, Yuly Kusumawati, Wiwik Dahanid And Ani Iryani

Judul : Unveiling the charge transfer behavior within ZSM- 5 and carbon nitride composites for enhanced photocatalytic degradation of methylene blue
Abstrak :

ZSM-5/graphitic carbon nitride (g-C3N4) composites were successfully prepared using a simple solvothermal method. By varying the amount of ZSM-5 and g-C3N4 in the composites, the charge carrier (electrons and holes) transfer within the materials, which contributes to the enhanced photocatalytic performance, was unraveled. The X-ray diffraction (XRD), Fourier-transform infrared (FTIR), and scanning electron microscopy (SEM) analysis revealed that more ZSM-5 component leads to a stronger interaction with g-C3N4. The photocatalytic performance test toward methylene blue (MB) degradation shows that more ZSM-5 in the composites is beneficial in enhancing photocatalytic activity. Meanwhile, the impedance electron spectroscopy (EIS) and photoluminescence (PL) analysis revealed that ZSM-5 facilitates the charge carrier transfer of photogenerated electrons and holes from g-C3N4 to the catalyst surface due to its lower charge transfer resistance. During the charge carrier migration, the interface between g-C3N4 and ZSM-5 particles may induce higher resistance for the charge carrier transfer, however after passing through the interface from g-C3N4 to ZSM-5 particles, the charge carrier can be efficiently transferred to the surface, hence suppressing the charge carrier recombination.

Tahun : 2022 Media Publikasi : Jurnal Internasional
Kategori : Jurnal No/Vol/Tahun : 5665 / 12 / 2022
ISSN/ISBN : DOI: 10.1039/d1ra09406h
PTN/S : ITS, Trisakti, Universitas Pakuan Program Studi : KIMIA
Bibliography :

1 L. Hu, C. Zhang, G. Zeng, G. Chen, J. Wan, Z. Guo, H. Wu, Z. Yu, Y. Zhou and J. Liu, RSC Adv., 2016, 6, 78595–78610.
2 A. Iryani, A. Masudi, A. I. Rozaa, D. Hartanto, M. Santoso,

H. Nur and M. S. Azami, Inorganics, 2020, 8, 52.
3 R. Ediati, W. Aulia, B. A. Nikmatin, A. R. P. Hidayat, U. M. Fitriana, C. Muarifah, D. O. Sulistiono, F. Martak

and D. Prasetyoko, Mater. Today Chem., 2021, 21, 100533.
4 M. Mouiya, A. Bouazizi, A. Abourriche, A. Benhammou, Y. El Haane, M. Ouammou, Y. Abouliatim, S. A. Younssi, A. Smith and H. Hannache, Mater. Chem. Phys., 2019, 227,

291–301.
5 J. O. Paul Nayagam and K. Prasanna, Chemosphere, 2022,

291, 132737.
6 F. Chen, T. Ma, T. Zhang, Y. Zhang and H. Huang, Adv, 2021,

33, 2005256.
7 W.P.Utomo,M.K.H.Leung,Z.Yin,H.WuandY.H.Ng,

Adv. Funct. Mater., 2022, 32, 2106713.
8 D. Ayodhya and G. Veerabhadram, Mater. Today Energy,

2018, 9, 83–113.
9 P. Shandilya, S. Sambyal, R. Sharma, P. Mandyal and B. Fang,

J. Hazard. Mater., 2022, 428, 128218.
10 P. Shandilya, A. Guleria and B. Fang, J. Environ. Chem. Eng.,

2021, 9, 106461.
11 W. Zhong, S. Shen, S. Feng, Z. Lin, Z. Wang and B. Fang,

CrystEngComm, 2018, 20, 7851–7856.
12 M. Hao, H. Li, L. Cui, W. Liu, B. Fang, J. Liang, X. Xie,

D. Wang and F. Wang, Environ. Chem. Lett., 2021, 19,

3573–3582.
13 G. Liao, C. Li, X. Li and B. Fang, Cell Rep. Phys. Sci., 2021, 2,

100355.

 

URL : https://pubs.rsc.org/en/content/articlelanding/2022/ra/d1ra09406h

 

Document

 
back