Repository Universitas Pakuan

Detail Karya Ilmiah Dosen

Chih‐Chien Lee, Johan Iskandar, Abdul Khalik Akbar, Hsin-Ming Cheng, Shun‐Wei Liu

Judul : Controllable crystallization based on the aromatic ammonium additive for efficiently near-infrared perovskite light-emitting diodes
Abstrak :

Organic-inorganic hybrid perovskite have recently drawn appreciable attention for applications in light-emitting diodes (LEDs). However, the weak exciton binding energy of the methylammonium lead iodide perovskite introduces large exciton dissociation and low radiative recombination on its application as emission layer in near-infrared LEDs. Herein, we demonstrate the simple method by incorporating of phenethylammonium iodide (PEAI) into the perovskite can concurrently improve the radiative recombination rate for improving perovskite LED performances. Additionally, by introducing PEAI dramatically constrains the growth of perovskite crystals during film forming, producing crystallites with small dimensions, reducing roughness, and pin-hole free. After optimizing the emission layer in the perovskite LED, a high optical output power of 458.03 μW and external quantum efficiency of 5.25% are achieved, which represents a ~50-fold enhancement in the quantum efficiency compared to device without PEAI. Our work suggests a broad application prospect of perovskite materials for high optical output power LEDs and eventually a potential for solution-processed electrically pumped NIR laser diodes.

Tahun : 2021 Media Publikasi : Jurnal Internasional
Kategori : Jurnal No/Vol/Tahun : 106327 / 99 / 2021
ISSN/ISBN : 1566-1199
PTN/S : National Taiwan University of Science and Technology Program Studi : TEKNIK KOMPUTER (D3)
Bibliography :

1. National Renewable Energy Laboratory Available online:
20190802.pdf (accessed on Mar 24, 2021).
2. Ren, Z.; Yu, J.; Qin, Z.; Wang, J.; Sun, J.; Chan, C.C.S.; Ding, S.; Wang, K.; Chen, R.; Wong, K.S.; et al. High-
Performance Blue Perovskite Light-Emitting Diodes Enabled by Efficient Energy Transfer between Coupled Quasi-2D
Perovskite Layers. Adv. Mater. 2021, 33, 1–10, doi:10.1002/adma.202005570.
3. Lin, K.; Xing, J.; Quan, L.N.; de Arquer, F.P.G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; et al. Perovskite
light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245–248,
4. Giuri, A.; Yuan, Z.; Miao, Y.; Wang, J.; Gao, F.; Sestu, N.; Saba, M.; Bongiovanni, G.; Colella, S.; Esposito Corcione, C.;
et al. Ultra-Bright Near-Infrared Perovskite Light-Emitting Diodes with Reduced Efficiency Roll-off. Sci. Rep. 2018, 8, 1–
8, doi:10.1038/s41598-018-33729-9.
5. Yao, L.; Zhang, S.; Wang, R.; Li, W.; Shen, F.; Yang, B.; Ma, Y. Highly Efficient Near-Infrared Organic Light-Emitting
Diode Based on a Butterfly-Shaped Donor-Acceptor Chromophore with Strong Solid-State Fluorescence and a Large
Proportion of Radiative Excitons. Angew. Chemie 2014, 126, 2151–2155, doi:10.1002/ange.201308486.
6. Maggini, L.; Cabrera, I.; Ruiz-Carretero, A.; Prasetyanto, E.A.; Robinet, E.; De Cola, L. Breakable mesoporous silica
nanoparticles for targeted drug delivery. Nanoscale 2016, 8, 7240–7247, doi:10.1039/c5nr09112h.
7. Han, X.B.; Li, H.X.; Jiang, Y.Q.; Wang, H.; Li, X.S.; Kou, J.Y.; Zheng, Y.H.; Liu, Z.N.; Li, H.; Li, J.; et al. Upconversion
nanoparticle-mediated photodynamic therapy induces autophagy and cholesterol efflux of macrophage-derived foam
cells via ROS generation. Cell Death Dis. 2017, 8, e2864, doi:10.1038/cddis.2017.242.
8. Zampetti, A.; Minotto, A.; Cacialli, F. Near-Infrared (NIR) Organic Light-Emitting Diodes (OLEDs): Challenges and
Opportunities. Adv. Funct. Mater. 2019, 29, 1–22, doi:10.1002/adfm.201807623.

9. Kang, Y.J.; Kwon, S.N.; Cho, S.P.; Seo, Y.H.; Choi, M.J.; Kim, S.S.; Na, S.I. Antisolvent Additive Engineering Containing
Dual-Function Additive for Triple-Cation p-i-n Perovskite Solar Cells with over 20% PCE. ACS Energy Lett. 2020, 5,
2535–2545, doi:10.1021/acsenergylett.0c01130.
10. Chiang, C.H.; Lin, J.W.; Wu, C.G. One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted
solar cell and module. J. Mater. Chem. A 2016, 4, 13525–13533, doi:10.1039/c6ta05209f.
11. Bi, D.; Moon, S.J.; Häggman, L.; Boschloo, G.; Yang, L.; Johansson, E.M.J.; Nazeeruddin, M.K.; Grätzel, M.; Hagfeldt,
A. Using a two-step deposition technique to prepare perovskite (CH 3NH3PbI3) for thin film solar cells based on ZrO2
and TiO2 mesostructures. RSC Adv. 2013, 3, 18762–18766, doi:10.1039/c3ra43228a.
12. Wu, J.; Xu, X.; Zhao, Y.; Shi, J.; Xu, Y.; Luo, Y.; Li, D.; Wu, H.; Meng, Q. DMF as an Additive in a Two-Step Spin-Coating
Method for 20% Conversion Efficiency in Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 26937–26947,
13. Zhou, Y.; Zhou, Z.; Chen, M.; Zong, Y.; Huang, J.; Pang, S.; Padture, N.P. Doping and alloying for improved perovskite
solar cells. J. Mater. Chem. A 2016, 4, 17623–17635, doi:10.1039/C6TA08699C.
14. Li, T.; Pan, Y.; Wang, Z.; Xia, Y.; Chen, Y.; Huang, W. Additive engineering for highly efficient organic-inorganic halide
perovskite solar cells: Recent advances and perspectives. J. Mater. Chem. A 2017, 5, 12602–12652,
15. Lin, H.; Zhu, L.; Huang, H.; Reckmeier, C.J.; Liang, C.; Rogach, A.L.; Choy, W.C.H. Efficient near-infrared light-emitting
diodes based on organometallic halide perovskite-poly(2-ethyl-2-oxazoline) nanocomposite thin films. Nanoscale 2016,
8, 19846–19852, doi:10.1039/c6nr08195a.
16. Cho, H.; Jeong, S.H.; Park, M.H.; Kim, Y.H.; Wolf, C.; Lee, C.L.; Heo, J.H.; Sadhanala, A.; Myoung, N.S.; Yoo, S.; et al.
Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science (80-. ). 2015, 350,
1222–1225, doi:10.1126/science.aad1818.
17. Tsai, C.M.; Wu, G.W.; Narra, S.; Chang, H.M.; Mohanta, N.; Wu, H.P.; Wang, C.L.; Diau, E.W.G. Control of preferred
orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%. J. Mater.
Chem. A 2017, 5, 739–747, doi:10.1039/c6ta09036b.
18. Kavadiya, S.; Strzalka, J.; Niedzwiedzki, D.M.; Biswas, P. Crystal reorientation in methylammonium lead iodide
perovskite thin film with thermal annealing. J. Mater. Chem. A 2019, 7, 12790–12799, doi:10.1039/c9ta02358e.
19. Oku, T. Crystal Structures of CH3NH3PbI3 and Related Perovskite Compounds Used for Solar Cells. Sol. Cells - New
Approaches Rev. 2015, doi:10.5772/59284.
20. Rai, R.; Triloki, T.; Singh, B.K. X-ray diffraction line profile analysis of KBr thin films. Appl. Phys. A Mater. Sci. Process.
2016, 122, 1–11, doi:10.1007/s00339-016-0293-3.
21. Zheng, G.; Zhu, C.; Ma, J.; Zhang, X.; Tang, G.; Li, R.; Chen, Y.; Li, L.; Hu, J.; Hong, J.; et al. Manipulation of facet
orientation in hybrid perovskite polycrystalline films by cation cascade. Nat. Commun. 2018, 9, 1–11,
22. Zhang, S.; Wu, S.; Chen, R.; Chen, W.; Huang, Y.; Zhu, H.; Yang, Z.; Chen, W. Controlling Orientation Diversity of Mixed
Ion Perovskites: Reduced Crystal Microstrain and Improved Structural Stability. J. Phys. Chem. Lett. 2019, 10, 2898–
2903, doi:10.1021/acs.jpclett.9b01180.
23. Koh, T.M.; Shanmugam, V.; Guo, X.; Lim, S.S.; Filonik, O.; Herzig, E.M.; Müller-Buschbaum, P.; Swamy, V.; Chien, S.T.;
Mhaisalkar, S.G.; et al. Enhancing moisture tolerance in efficient hybrid 3D/2D perovskite photovoltaics. J. Mater. Chem.
A 2018, 6, 2122–2128, doi:10.1039/c7ta09657g.
24. Xiao, Z.; Kerner, R.A.; Zhao, L.; Tran, N.L.; Lee, K.M.; Koh, T.W.; Scholes, G.D.; Rand, B.P. Efficient perovskite lightemitting
diodes featuring nanometre-sized crystallites. Nat. Photonics 2017, 11, 108–115,
25. Yang, X.; Gu, H.; Li, S.; Li, J.; Shi, H.; Zhang, J.; Liu, N.; Liao, Z.; Xu, W.; Tan, Y. Improved photoelectric performance
of all-inorganic perovskite through different additives for green light-emitting diodes. RSC Adv. 2019, 9, 34506–34511,
26. Huang, C.Y.; Chang, S.P.; Ansay, A.G.; Wang, Z.H.; Yang, C.C. Ambient-processed, additive-assisted CsPbBr3
perovskite light-emitting diodes with colloidal NiOx nanoparticles for efficient hole transporting. Coatings 2020, 10,
27. Chang, C.Y.; Chu, C.Y.; Huang, Y.C.; Huang, C.W.; Chang, S.Y.; Chen, C.A.; Chao, C.Y.; Su, W.F. Tuning perovskite
morphology by polymer additive for high efficiency solar cell. ACS Appl. Mater. Interfaces 2015, 7, 4955–4961,
28. Fung, D.D.S.; Qiao, L.; Choy, W.C.H.; Wang, C.; Sha, W.E.I.; Xie, F.; He, S. Optical and electrical properties of efficiency
enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer. J. Mater. Chem. 2011, 21, 16349–16356,
29. Ge, Q.Q.; Ding, J.; Liu, J.; Ma, J.Y.; Chen, Y.X.; Gao, X.X.; Wan, L.J.; Hu, J.S. Promoting crystalline grain growth and
healing pinholes by water vapor modulated post-annealing for enhancing the efficiency of planar perovskite solar cells.
J. Mater. Chem. A 2016, 4, 13458–13467, doi:10.1039/c6ta05288f.
30. Kim, J.M.; Lee, C.H.; Kim, J.J. Mobility balance in the light-emitting layer governs the polaron accumulation and operational stability of organic light-emitting diodes. Appl. Phys. Lett. 2017, 111, 2–7, doi:10.1063/1.5004623.
31. Zhang, C.; Luan, W.; Yin, Y. High Efficient Planar-heterojunction Perovskite Solar Cell Based on Two-step Deposition
Process. Energy Procedia 2017, 105, 793–798, doi:10.1016/j.egypro.2017.03.391.
32. Al Amin, N.R.; Kesavan, K.K.; Biring, S.; Lee, C.-C.; Yeh, T.-H.; Ko, T.-Y.; Liu, S.-W.; Wong, K.-T. A Comparative Study
via Photophysical and Electrical Characterizations on Interfacial and Bulk Exciplex-Forming Systems for Efficient Organic
Light-Emitting Diodes. ACS Appl. Electron. Mater. 2020, 2, 1011–1019, doi:10.1021/acsaelm.0c00062.
33. Chang, C.Y.; Hong, W.L.; Lo, P.H.; Wen, T.H.; Horng, S.F.; Hsu, C.L.; Chao, Y.C. Perovskite white light-emitting diodes
with a perovskite emissive layer blended with rhodamine 6G. J. Mater. Chem. C 2020, 8, 12951–12958,
34. Liang, X.; Baker, R.W.; Wu, K.; Deng, W.; Ferdani, D.; Kubiak, P.S.; Marken, F.; Torrente-Murciano, L.; Cameron, P.J.
Continuous low temperature synthesis of MAPbX3 perovskite nanocrystals in a flow reactor. React. Chem. Eng. 2018,
3, 640–644, doi:10.1039/c8re00098k.
35. Jasieniak, J.; Califano, M.; Watkins, S.E. Size-dependent valence and conduction band-edge energies of semiconductor
nanocrystals. ACS Nano 2011, 5, 5888–5902, doi:10.1021/nn201681s.
36. Ho, C.L.; Li, H.; Wong, W.Y. Red to near-infrared organometallic phosphorescent dyes for OLED applications. J.
Organomet. Chem. 2014, 751, 261–285, doi:10.1016/j.jorganchem.2013.09.035.
37. Kang, G.W.; Ahn, Y.J.; Lee, C.H. Effects of doping in organic electroluminescent devices doped with a fluorescent dye.
J. Inf. Disp. 2001, 2, 1–5, doi:10.1080/15980316.2001.9651859.
38. Tseng, Z.-L.; Lin, S.-H.; Tang, J.-F.; Huang, Y.-C.; Cheng, H.-C.; Huang, W.-L.; Lee, Y.-T.; Chen, L.-C. Polymeric Hole
Transport Materials for Red CsPbI3 Perovskite Quantum-Dot Light-Emitting Diodes. Polymers (Basel). 2021, 13, 896,
39. Zou, C.; Liu, Y.; Ginger, D.S.; Lin, L.Y. Suppressing Efficiency Roll-Off at High Current Densities for Ultra-Bright Green
Perovskite Light-Emitting Diodes. ACS Nano 2020, 14, 6076–6086, doi:10.1021/acsnano.0c01817.
40. Chen, S.; Cao, W.; Liu, T.; Tsang, S.W.; Yang, Y.; Yan, X.; Qian, L. On the degradation mechanisms of quantum-dot
light-emitting diodes. Nat. Commun. 2019, 10, 1–9, doi:10.1038/s41467-019-08749-2.
41. Zhang, L.; Nakanotani, H.; Adachi, C. Capacitance-voltage characteristics of a 4,4′-bis[(N-carbazole) styryl]biphenyl
based organic light-emitting diode: Implications for characteristic times and their distribution. Appl. Phys. Lett. 2013, 103,
8–12, doi:10.1063/1.4819436.
42. Pil’nik, A.A.; Chernov, A.A.; Islamov, D.R. Charge transport mechanism in dielectrics: drift and diffusion of trapped charge
carriers. Sci. Rep. 2020, 10, 1–10, doi:10.1038/s41598-020-72615-1.
43. Al-Qrinawi, M.S.; El-Agez, T.M.; Abdel-Latif, M.S.; Taya, S.A. Influence of Copper Phthalocyanine (CuPc) Thin Layer on
Capacitance-Voltage Characterization of a Device Consisting of ITO/CuPc/PVK/Rhodamine B Dye Layers. Int. J. Thin
Film. Sci. Technol. 2017, 6, 61–66, doi:10.18576/ijtfst/060202.
44. Moser, J.E. Perovskite photovoltaics: Slow recombination unveiled. Nat. Mater. 2016, 16, 4–6, doi:10.1038/nmat4796.
45. Qian, R.; Zong, H.; Schneider, J.; Zhou, G.; Zhao, T.; Li, Y.; Yang, J.; Bahnemann, D.W.; Pan, J.H. Charge carrier
trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catal. Today 2019, 335, 78–90,
46. Haneef, H.F.; Zeidell, A.M.; Jurchescu, O.D. Charge carrier traps in organic semiconductors: A review on the underlying
physics and impact on electronic devices. J. Mater. Chem. C 2020, 8, 759–787, doi:10.1039/c9tc05695e.
47. Guan, M.; Niu, L.; Zhang, Y.; Liu, X.; Li, Y.; Zeng, Y. Space charges and negative capacitance effect in organic lightemitting
diodes by transient current response analysis. RSC Adv. 2017, 7, 50598–50602, doi:10.1039/c7ra07311a.
48. Zheng, Y.; Zheng, L.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K. Ag/ZnO heterostructure nanocrystals: Synthesis,
characterization, and photocatalysis. Inorg. Chem. 2007, 46, 6980–6986, doi:10.1021/ic700688f.
49. Zhang, L.; Taguchi, D.; Manaka, T.; Iwamoto, M. Direct probing of the selective electron and hole accumulation at
organic/organic interfaces in a triple-layer organic device by time-resolved optical second harmonic generation. Appl.
Phys. Lett. 2011, 99, 2009–2012, doi:10.1063/1.3626851.
50. Knapp, E.; Ruhstaller, B. Analysis of negative capacitance and self-heating in organic semiconductor devices. J. Appl.
Phys. 2015, 117, 135501, doi:10.1063/1.4916981.
51. Blauth, C.; Mulvaney, P.; Hirai, T. Negative capacitance as a diagnostic tool for recombination in purple quantum dot
LEDs. J. Appl. Phys. 2019, 125, doi:10.1063/1.5088177.