Repository Universitas Pakuan

Detail Karya Ilmiah Dosen

TRI - PANJI, Firda DIMAWARNITA, Irma KRESNAWATY, Susy SAADAH, Tri AMININGSIH, Mira MIRANTI

Judul : Gliserolisis enzimatik CPO dengan lipase amobil untuk produksi diasil dan monoasil gliserol
Abstrak :

ABSTRACT

CPO is one of the largest plantation commodities that has a lot of derrivative products, among others are DiAcyl Glycerol (DAG) and MonoAcyl Glycerol (MAG). These derivative products have much higher added value because these can serve as healthy oil that able to prevent fat accumulation  in human body.The industry of the derivative products is not yet developed in Indonesia, among others are caused by underdeveloped technology of specific lipase enzyme for the production of DAG 1.3- glycerides, the stability and the activity of lipase enzyme need to be improved. This research was conducted with the aim to develop the production technology for 1.3-glycerides, developthe technology forlipase immobilization, develop the technology for CPO glycerolysis with immobilized lipase, and obtain the data composition of glycerolysis products. Lipase-producing fungi were isolated from tempeh, then cultured in a growth medium containing CPO. Lipase was then immobilized on severall solid support. Glycerolysis product composition was analyzed by Thin Layer Chromatography. The research results showed that the immobilization of lipases from Rhyzopus oryzae with adsorption techniques can be performed using zeolite, CaCO3, silica gel, and cow bones. The highest activity of immobilized lipase is on CaCO3as much as 99.46%, then on cow bones (91.56%), on zeolite (90.69%), andsilica gel (59.63%). The optimum condition of non immobillized lipase is pH 7 and temperature 30 °C, while immobilized lipase on CaCO3 is at  pH 8 and temperature35 ° CLipase immobilized on zeolite is at pH 8 and temperature of 30 ° C, on cow bone is at pH 7 and temperature of 30° C, andon silica gel is at pH 8 and temperature of 30° C. The all immobilized lipases are more stable than the free enzyme since the first week of storage. The optimum time of DAG production by immobilized lipase on CaCO3 is 18 hours to produce DAG level of 34.49% of the substrate

.[Keywords: enzymatic glycerolysis, lipase, DAG, MAG, enzyme immobilization]

 

Tahun : 2019 Media Publikasi : Jurnal Nasional Terakreditasi A
Kategori : Jurnal No/Vol/Tahun : 1 / 87 / 2019
ISSN/ISBN : 1858-3768
PTN/S : Universitas Pakuan Program Studi : KIMIA
Bibliography :

Agaian G, Ridhawati MM, Chumaidi A & Hendrawati N (2017). Hidrolisis Minyak Kelapa Dengan Lipase Terimobilisasi Zeolit pada Pembuatan Perisa Alami. Jurnal Bahan Alam Terbarukan 5(2), 84-91.

Cheong LZ & Lai OM (2009). Diacylglycerol oil: Healthful or hype?. Inform (champaign) 20(6), 391-393.

Datta S, Christena LR & Rajaram YRS (2013). Enzyme immobiliation: an overview on techniques and support materials. Journal Biotech 3,1-9.

Eom TK, Kong CS, Byun HG, Jung WK & Kim SK (2010). Lipase catalytic synthesis of diacylglycerol from tuna oil and its anti-obesity effect in C57BL/6J mice. Process Biochemistry, 45(5), 738-743.

Feltes MMC, de Oliveira D, Block JM & Ninow JL (2013). The production, benefits, and applications of monoacylglycerols and diacylglycerols of nutritional interest. Food and Bioprocess Technology 6(1), 17-35.

Garcia‐Galan C, Berenguer‐Murcia Á, Fernandez‐Lafuente R & Rodrigues RC (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis & Catalysis 353(16), 2885-2904.

Ghattas N, Abidi F, Galai S, Marzouki MN & Salah AB (2014). Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase. International journal of biological macromolecules 68, 1-6.

Jamlus NNA, Salimon J & Derawi D (2016). Enzymatic glycerolysis of methyl laurate utilizing Candida antarctica Lipase b. Malaysian Journal of Analytical Sciences 20(6), 1365-1372.

Kawakami, Koei, Yasuhiro Oda, & Ryo Takahashi (2011). "Application of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil." Biotechnology for biofuels 4 (1)42.Kharrat N, Ali YB, Marzouk S, Gargouri YT & Karra-Châabouni M (2011). Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: Comparison with the free enzyme. Process Biochemistry 46(5), 1083-1089.

Lo SK, Tan CP, Long K, Yusoff MSA & Lai OM (2008). Diacylglycerol oil-properties, processes and products: a review. Food and Bioprocess Technology 1(3), 223.

Nelson DL, Cox MM (2008). Lehninger: Principles of Biochemistry 5th Edition. New York: WH Freeman and Company.

Palilingan SC (2013). Optimasi produksi enzimatis diasilgliserol dari CPO dengan sistem kontinu. [Tesis]. Bogor (ID) : Sekolah Pasca Sarjana. Institut Pertanian Bogor.2013.

Ren Y, Rivera JG, He L, Kulkarni H, Lee DK & Messersmith P B (2011). Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC biotechnology, 11(1), 63.

Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R & Fernández-Lafuente R (2013). Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42(15), 6290-6307.

Sawangpanya N Muangchim C& Phisalaphong M (2010). Immobilization of lipase on CaCO3 and entrapment in calcium alginate bead for biodiesel production. Sci J UBU. Vol. 1. No. 2. 46-51.

Sitanggang Togar (2018). Refleksi Industri Kelapa Sawit 2017 dan Prospek 2018. https://gapki.id/news/4140/refleksi-industri-kelapa-sawit-2017-dan-prospek-2018. Diakses pada 19 Oktober 2018.

Suharyanto, Tri-Panji& Perwitasari U (2011). Optimasi Produksi Diasilgliserol dari Crude Palm Oil Menggunakan Lipase Spesifik 1,3-gliserida dari Rhizopus oryzae TP-2. Menara Perkebunan 79(1), 23-29.

Tran D N, & Balkus Jr KJ (2011). Perspective of recent progress in immobilization of enzymes. Acs Catalysis 1(8), 956-968.

Treichel H, de Oliveira D, Mazutti MA, Di Luccio M & Oliveira JV (2010). A review on microbial lipases production. Food and bioprocess technology 3(2), 182-196.

Tri-Panji, Palilingan SC & Artika IM (2014). Optimasi produksi enzimatis diasilgliserol melalui gliserolisis kontinu. Jurnal Teknologi dan Industri Pangan 25(1), 16.

Tri-Panji, Suharyanto& Arini N (2008). Lipase spesifik 1,3-gliserida dari fungi lokal untuk biokonversi CPO menjadi diasilgliserol. Menara Perkebunan 76(1), 11-22.

Valério A, Rovani S, Treichel H, de Oliveira D & Oliveira JV (2010). Optimization of mono and diacylglycerols production from enzymatic glycerolysis in solvent-free systems. Bioprocess and biosystems engineering 33(7), 805-812.

Wulan PP, Rejoso MT & Hermansyah H (2011). Reaksi hidrolisis minyak zaitun menggunakan lipase Rhizopus oryzae yang di imobilisasi melalui metode adsorpsi. Departemen Teknik Kimia, Fakultas Teknik, Universitas Indonesia, Depok, Laporan Penelitian.

Yang G, Wu J, Xu G & Yang L (2010). Comparative study of properties of immobilized lipase onto glutaraldehyde-activated amino-silica gel via different methods. Colloids and Surfaces B: Biointerfaces 78(2), 351-356.

Yesiloglu Y &Sit L (2011). Biochemical properties of free and immobilized Candida rugosa lipase onto Al2O3: a comparative study. Artifiacial cells, blood substitutes and bitechnology 39,247-251.

Yuan Q, Ramprasath VR, Harding SV, Rideout TC, Chan YM & Jones JH (2010). Diacylglycerol oil reduces body fat but does not alter energy or lipid metabolism in overwight, hypertriglyceridemic women. The Journal of Nutrition 140(6), 1122-1126.

Zhong N, Li L, Xu X, Cheong LZ, Xu Z & Li B (2013). High yield of monoacylglycerols production through low‐temperature chemical and enzymatic glycerolysis. European Journal of Lipid Science and Technology 115(6), 684-690.

Zou B, Hu Y, Cui F, Jiang L, Yu D& Huang H (2014). Effect of surface modification of low cost mesoporous SiO2 carriers on the properties of immobilized lipase. Journal of Colloid and interface science 417,210-216.

 

URL : http://mp.iribb.org/index.php/mpjurnal/article/view/321

 

Document

 
back