Repository Universitas Pakuan

Detail Karya Ilmiah Dosen

Lahiru S. Wijedasa, Ronald Vernimmen, Susan E. Page, Dedi Mulyadi, Samsul Bahri, Agusti Randi, Theodore A. Evans, Lasmito, Dolly Priatna, Rolf M. Jensen, Aljosja Hooijer

Judul : Distance to forest, mammals and birds dispersal drive natural regeneration on degraded tropical peatland
Abstrak :


Restoration of peat swamp forest (PSF) on degraded Southeast Asian peatlands could reduce global carbon emissions and biodiversity loss. However, multiple ecological barriers are believed to hinder natural regeneration of native trees on degraded peatland and make restoration expensive. We evaluated if natural PSF regeneration occurs and what factors may influence it on eight different land use and land cover (LULC) classes with different types of disturbance, including drainage and fire, in a retired Acacia crassicarpa Benth. (Acacia) plantation landscape. The study involved 42 plots inside five PSF LULCs – intact, logged, burnt (1997, 2015), remnant and 212 plots at distances up to 2 km from the PSF edge in three Acacia plantation LULCs – unharvested, harvested, and burnt. The number of species per plot were similar between intact PSF (25 ± 6 (SD) per 20 m × 10 m plot), logged forest (30 ± 6) and 1997 burnt forest (30 ± 13) but lower in 2015 burnt forest (11 ± 10) and remnant forest (18 ± 11). Regeneration away from the PSF across all degraded LULCs varied from fern dominated areas with no regeneration to clusters with high stem densities. The plantation LULCs, unharvested (94 species) and harvested Acacia (71 species), had similar overall species diversity after 3–4 years of regeneration to the intact and logged PSF (90 species). In unharvested Acacia, total species diversity, species per plot and stem density decreased with distance from forest edge (1–300 m – 87 species; 9 ± 6 (SD) species per 20 m × 10 m plot; 1,056 stems/ha; 301–500 m – 33; 5 ± 2; 511 and >500 m – 38; 6 ± 3; 683). In harvested Acacia, there was low plot species diversity irrespective of distance from the forest (1–300 m – 51; 4 ± 2; 578; 301–500 m – 17; 4 ± 2; 1,100; >500 m – 48; 4 ± 2; 780). Factors which may influence regeneration differed between different LULCs, but there was a clear influence of distance from forest edge and dispersal mechanism – i.e. whether a tree was bird or mammal dispersed and the interaction between these two factors. While our study suggests that if not further disturbed by logging, drainage and/or fire, degraded PSF could regenerate naturally to a similar species diversity as intact PSF, the lower levels of natural regeneration further away from the forest may warrant selective planting of species which do not disperse over long distances. More study is needed on the factors facilitating natural regeneration, whether it leads to restoration of PSF ecosystem functioning and the role of Acacia as a potential regeneration catalyst.

Tahun : 2020 Media Publikasi : Jurnal Internasional
Kategori : Jurnal No/Vol/Tahun : 117868 / 461 / 2020
ISSN/ISBN : 0378-1127
Bibliography :


Anderson, 1964

J.A.R. AndersonThe structure and development of the peat swamps of Sarawak and Brunei

J. Trop. Geogr., 18 (1964), pp. 7-15

View Record in ScopusGoogle Scholar

Anderson, 1983

Anderson, J.A.R., 1983. The tropical peat swamps of western Malesia. Mires: swamp, bog, fen and moor: regional studies.

Google Scholar

Banjarbaru Forestry Research Unit, 2014

Banjarbaru Forestry Research Unit, FORDA, Graham, L.L.B., 2014. Tropical Peat Swamp Forest Silviculture in Central Kalimantan: A series of five research papers. doi: 10.13140/rg.2.1.1071.9126.

Google Scholar

Basak et al., 2015

S.R. Basak, A.C. Basak, M.A. RahmanImpacts of floods on forest trees and their coping strategies in Bangladesh

Weather Clim. Extrem., 7 (2015), pp. 43-48, 10.1016/j.wace.2014.12.002

ArticleDownload PDFView Record in ScopusGoogle Scholar

Blackham and Corlett, 2015

G.V. Blackham, R.T. CorlettPost-dispersal seed removal by ground-feeding rodents in tropical peatlands, Central Kalimantan, Indonesia

Sci. Rep., 5 (2015), 10.1038/srep14152

Google Scholar

Blackham et al., 2014

G.V. Blackham, E.L. Webb, R.T. CorlettNatural regeneration in a degraded tropical peatland, Central Kalimantan, Indonesia: implications for forest restoration

For. Ecol. Manage., 324 (2014), pp. 8-15, 10.1016/j.foreco.2014.03.041

ArticleDownload PDFView Record in ScopusGoogle Scholar

Cannon et al., 2007

C.H. Cannon, L.M. Curran, A.R. Marshall, M. Leighton, M. LeightonLong-term reproductive behaviour of woody plants across seven Bornean forest types in the Gunung Palung National Park (Indonesia): suprannual synchrony, temporal productivity and fruiting diversity

Ecol. Lett., 10 (2007), pp. 956-969, 10.1111/j.1461-0248.2007.01089.x

CrossRefView Record in ScopusGoogle Scholar

Chazdon and Guariguata, 2016

R.L. Chazdon, M.R. GuariguataNatural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges

Biotropica, 48 (2016), pp. 716-730, 10.1111/btp.12381

CrossRefView Record in ScopusGoogle Scholar

Dargie et al., 2017

G.C. Dargie, S.L. Lewis, I.T. Lawson, E.T.A. Mitchard, S.E. Page, Y.E. Bocko, S.A. IfoAge, extent and carbon storage of the central Congo Basin peatland complex

Nature, 542 (2017), pp. 86-90, 10.1038/nature21048

CrossRefView Record in ScopusGoogle Scholar

Drösler et al., 2014

Drösler, M., Verchot, L.V., Freibauer, A., Pan, G., Evans, C.D., Bourbonniere, R.A., Alm, J.P., Page, S., Agus, F., Hergoualc’h, K., Couwenberg, J., Jauhiainen, J., Sabiham, S., Wang, C., Srivastava, N., Borgeau-Chavez, L., Hooijer, A., Minkkinen, K., French, N., Strand, T., Sirin, A., Mickler, R., Tansey, K., Larkin, N., 2014. Chapter 2: Drained inland organic soils, in: Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Jamsranjav, B., Fukuda, M., Troxler, T. (Eds.), 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. IPCC, Switzerland, pp. 1–79.

Google Scholar

Evans et al., 2017

Evans, C.D., Page, S.E., Morrison, R., Artz, R., Wijedasa, L.S., 2017. The potential of responsible peatland management to reduce global soil carbon loss and greenhouse gas emissions, in: Global Symposium on Soil Organic Carbon. Rome, Italy, pp. 21–23.

Google Scholar

Freund et al., 2017

C.A. Freund, F.A. Harsanto, A. Purwanto, H. Takahashi, M.E. HarrisonMicrotopographic specialization and flexibility in tropical peat swamp forest tree species

Biotropica (2017), pp. 1-7, 10.1111/btp.12512

CrossRefView Record in ScopusGoogle Scholar

Giesen et al., 2018

W. Giesen, L.S. Wijedasa, S.E. PageUnique Southeast Asian peat swamp forest habitats have relatively few distinctive plant species

Mires Peat (2018), pp. 1-13, 10.19189/MaP.2017.OMB.287

View Record in ScopusGoogle Scholar

Graham et al., 2017

L.L.B. Graham, W. Giesen, S.E. PageA common-sense approach to tropical peat swamp forest restoration in Southeast Asia

Restor. Ecol., 25 (2017), pp. 312-321, 10.1111/rec.12465

CrossRefView Record in ScopusGoogle Scholar

Graham and Page, 2012

L.L.B. Graham, S.E. PageArtificial bird perches for the regeneration of degraded tropical peat swamp forest: a restoration tool with limited potential

Restor. Ecol., 20 (2012), pp. 631-637, 10.1111/j.1526-100X.2011.00805.x

CrossRefView Record in ScopusGoogle Scholar

Gunawan et al., 2012

Gunawan, H., Kobayashi, S., Mizuno, K., Kono, Y., 2012. Peat swamp forest types and their regeneration in Giam Siak Kecil-Bukit Batu Biosphere Reserve, Riau, East Sumatra, Indonesia. Mires Peat 10, 1–17. doi: 1819-754X.

Google Scholar

Hansson and Dargusch, 2018

Hansson, A., Dargusch, P., 2018. An estimate of the financial cost of peatland restoration in Indonesia. Case Stud. Environ. doi: 10.1525/cse.2017.000695.

Google Scholar

Harrison et al., 2010

Harrison, M., Husson, S.J., D’Arcy, L., Morrogh-Bernard, H., Cheyne, S.M., Van Noordwijk, M., van Schaik, C.P., 2010. The Fruiting Phenology of Peat-swamp Forest Tree Species at Sabangau and Tuanan, Central Kalimantan, Indonesia, The Kalimantan Forests and Climate Partnership.

Google Scholar

Hirano et al., 2014

T. Hirano, K. Kusin, S. Limin, M. OsakiEvapotranspiration of tropical peat swamp forests

Glob. Change Biol. (2014), pp. 1914-1927, 10.1111/gcb.12653

Google Scholar

Holl et al., 2000

K.D. Holl, M.E. Loik, E.H.V. Lin, I.A. SamuelsTropical Montane forest restoration in Costa Rica: overcoming barriers to dispersal and establishment

Restor. Ecol., 8 (2000), pp. 339-349, 10.1046/j.1526-100x.2000.80049.x

View Record in ScopusGoogle Scholar

Holl et al., 2017

K.D. Holl, J.L. Reid, J.M. Chaves-Fallas, F. Oviedo-Brenes, R.A. ZahawiLocal tropical forest restoration strategies affect tree recruitment more strongly than does landscape forest cover

J. Appl. Ecol., 54 (2017), pp. 1091-1099, 10.1111/1365-2664.12814

CrossRefView Record in ScopusGoogle Scholar

Hooijer et al., 2010

A. Hooijer, S. Page, J.G. Canadell, M. Silvius, J. Kwadijk, H. Wösten, J. JauhiainenCurrent and future CO2 emissions from drained peatlands in Southeast Asia

Biogeosciences, 7 (2010), pp. 1505-1514, 10.5194/bg-7-1505-2010

CrossRefView Record in ScopusGoogle Scholar

Hoscilo et al., 2011

A. Hoscilo, S.E. Page, K.J. Tansey, J.O. RieleyEffect of repeated fires on land-cover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005

Int. J. Wildland Fire, 20 (2011), pp. 578-588, 10.1071/WF10029

View Record in ScopusGoogle Scholar

Kuusipalo et al., 1995

J. Kuusipalo, G. Ådjers, Y. Jafarsidik, A. Otsamo, K. Tuomela, R. VuokkoRestoration of natural vegetation in degraded Imperata cylindrica grassland: understorey development in forest plantations

J. Veg. Sci., 6 (1995), pp. 205-210, 10.2307/3236215

CrossRefView Record in ScopusGoogle Scholar

Lampela et al., 2016

M. Lampela, J. Jauhiainen, I. Kämäri, M. Koskinen, T. Tanhuanpää, A. Valkeapää, H. VasanderGround surface microtopography and vegetation patterns in a tropical peat swamp forest

Catena, 139 (2016), pp. 127-136, 10.1016/j.catena.2015.12.016

ArticleDownload PDFView Record in ScopusGoogle Scholar

Lampela et al., 2017

M. Lampela, J. Jauhiainen, S. Sarkkola, H. VasanderPromising native tree species for reforestation of degraded tropical peatlands

For. Ecol. Manage., 394 (2017), pp. 52-63, 10.1016/j.foreco.2016.12.004

ArticleDownload PDFView Record in ScopusGoogle Scholar

Lampela et al., 2018

M. Lampela, J. Jauhiainen, S. Sarkkola, H. VassanderTo treat or not to treat? The seedling performance of native tree species for reforestation on degraded tropical peatlands of SE Asia

For. Ecol. Manage., 429 (2018), pp. 217-225, 10.1016/j.foreco.2018.06.029

ArticleDownload PDFView Record in ScopusGoogle Scholar

Lampela et al., 2014

M. Lampela, J. Jauhiainen, H. VasanderSurface peat structure and chemistry in a tropical peat swamp forest

Plant Soil, 382 (2014), pp. 329-347, 10.1007/s11104-014-2187-5

CrossRefView Record in ScopusGoogle Scholar

Lugo, 1997

A.E. LugoThe apparent paradox of reestablishing species richness on degraded lands with tree monocultures

For. Ecol. Manage., 99 (1997), pp. 9-19, 10.1016/S0378-1127(97)00191-6

ArticleDownload PDFView Record in ScopusGoogle Scholar

Miettinen et al., 2017

J. Miettinen, A. Hooijer, R. Vernimmen, S.C. Liew, S.E. PageFrom carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990

Environ. Res. Lett., 12 (2017)

Google Scholar

Miettinen et al., 2013

J. Miettinen, J. Wang, A. Hooijer, S. LiewPeatland conversion and degradation processes in insular Southeast Asia: a case study in Jambi, Indonesia

Land Degrad. Dev., 24 (2013), pp. 334-341, 10.1002/ldr.1130

CrossRefView Record in ScopusGoogle Scholar

Nishimua et al., 2007

T.B. Nishimua, E. Suzuki, T. Kohyama, S. TsuyuzakiMortality and growth of trees in peat-swamp and heath forests in Central Kalimantan after severe drought

Plant Ecol., 188 (2007), pp. 165-177, 10.1007/s11258-006-9154-z

CrossRefView Record in ScopusGoogle Scholar

Orwa et al., 2009

Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., Anthony, S., 2009. Agroforestree Database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya.

Google Scholar

Page et al., 1999

S.E. Page, J.O. Rieley, Ø.W. Shotyk, D. WeissInterdependence of peat and vegetation in a tropical peat swamp forest

Changes and Disturbance in Tropical Rainforest in South-East Asia (1999), pp. 161-173

Google Scholar

Page et al., 2009

S. Page, A. HosciÅ‚o, H. Wösten, J. Jauhiainen, M. Silvius, J. Rieley, H. Ritzema, K. Tansey, L. Graham, H. Vasander, S. LiminRestoration ecology of lowland tropical peatlands in Southeast Asia: current knowledge and future research directions

Ecosystems, 12 (2009), pp. 888-905, 10.1007/s10021-008-9216-2

CrossRefView Record in ScopusGoogle Scholar

Parotta, 2012

J.A. ParottaRestoration and management of degraded tropical forest landscapes

R.S. Ambasht, N.K. Ambasht (Eds.), Modern Trends in Applied Terrestrial Ecology, Springer Science and Business Media (2012)

Google Scholar

Posa et al., 2011

M.R.C. Posa, L.S. Wijedasa, R.T. CorlettBiodiversity and conservation of tropical peat swamp forests

BioScience, 61 (2011), pp. 49-57, 10.1525/bio.2011.61.1.10

CrossRefView Record in ScopusGoogle Scholar

R Core Team, 2019

R Core TeamR: A Language and Environment for Statistical Computing

R Foundation for Statistical Computing, Vienna, Austria (2019)

Google Scholar

Republic of Indonesia, 2016

Republic of Indonesia, 2016. First Nationally Determined Contribution.

Google Scholar

Russon et al., 2001

A.E. Russon, A. Erman, R. DennisThe population and distribution of orangutans (Pongo pygmaeus pygmaeus) in and around the Danau Sentarum Wildlife Reserve, West Kalimantan, Indonesia

Biol. Conserv., 97 (2001), pp. 21-28, 10.1016/S0006-3207(00)00087-2

ArticleDownload PDFView Record in ScopusGoogle Scholar

Saito et al., 2005

H. Saito, M. Shibuya, S.J. Tuah, M. Turjaman, K. Takahashi, Y. Jamal, H. Segah, P.E. Putir, S.H. LiminInitial screening of fast-growing tree species being tolerant of dry tropical peatlands in Central Kalimantan, Indonesia

J. For. Res., 2 (2005), pp. 1-10

CrossRefView Record in ScopusGoogle Scholar

Van Eijk and Leenman, 2004

Van Eijk, P., Leenman, P.H., 2004. Regeneration of fire degraded peatswamp forest in Berbak National Park and implementation replanting programmes, Water for food & ecosystems programme project on: ‘Promoting the river basin and ecosystem approach for sustainable management of SE Asian lowland peatswamp forests.’ Alterra, Wageningen, The Netherlands.

Google Scholar

Wijedasa et al., 2016

Wijedasa, L., Jauhiainen, J., Könönen, M., Lampela, M., Vasander, H., LeBlanc, M.-C., Evers, S., Smith, T.E.L., Yule, C.M., Varkkey, H., Lupascu, M., Parish, F., Singleton, I., Clements, G.R., Aziz, S.A., Harrison, M.E., Cheyne, S., Anshari, G.Z., Meijaard, E., Goldstein, J.E., Waldron, S., Hergoualc’h, K., Dommain, R., Frolking, S., Evans, C.D., Posa, M.R.C., Glaser, P.H., Suryadiputra, N., Lubis, R., Santika, T., Padfield, R., Kurnianto, S., Hadisiswoyo, P., Lim, T.W., Page, S.E., Gauci, V., van der Meer, P.J., Buckland, H., Garnier, F., Samuel, M.K., Choo, L.N.L.K., O’Reilly, P., Warren, M., Suksuwan, S., Sumarga, E., Jain, A., Laurance, W.F., Couwenberg, J., Joosten, H., Vernimmen, R., Hooijer, A., Malins, C., Cochrane, M.A., Perumal, B., Siegert, F., Peh, K.S.-H., Comeau, L.-P., Verchot, L., Harvey, C.F., Cobb, A., Jaafar, Z., Wösten, H., Manuri, S., Müller, M., Giesen, W., Phelps, J., Yong, D.L., Silvius, M., Wedeux, B.M.M., Hoyt, A., Osaki, M., Takashi, H., Takahashi, H., Kohyama, T.S., Haraguchi, A., Nugroho, N.P., Coomes, D.A., Quoi, L.P., Dohong, A., Gunawan, H., Gaveau, D.L.A., Langner, A., Lim, F.K.S., Edwards, D.P., Giam, X., van der Werf, G., Carmenta, R., Verwer, C.C., Gibson, L., Grandois, L., Graham, L.L.B., Regalino, J., Wich, S.A., Rieley, J., Kettridge, N., Brown, C., Pirard, R., Moore, S., Ripoll Capilla, B., Ballhorn, U., Ho, H.C., Hoscilo, A., Lohberger, S., Evans, T.A., Yulianti, N., Blackham, G., Onrizal, Husson, S., Murdiyarso, D., Pangala, S., Cole, L.E.S., Tacconi, L., Segah, H., Tonoto, P., Lee, J.S.H., Schmilewski, G., Wulffraat, S., Putra, E.I., Cattau, M.E., Clymo, R.S., Morrison, R., Mujahid, A., Miettinen, J., Liew, S.C., Valpola, S., Wilson, D., D’Arcy, L., Gerding, M., Sundari, S., Thornton, S.A., Kalisz, B., Chapman, S.J., Su, A.S.M., Basuki, I., Itoh, M., Traeholt, C., Sloan, S., Sayok, A.K., Andersen, R., 2016. Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences. Glob. Change Biol. 23, 977–982. doi: 10.1111/gcb.13516.

Google Scholar

Wijedasa et al., 2018

L.S. Wijedasa, S. Sloan, S.E. Page, G.R. Clements, M. Lupascu, T.A. EvansCarbon emissions from South-East Asian peatlands will increase despite emission-reduction schemes

Glob. Change Biol., 24 (2018), pp. 4598-4613, 10.1111/gcb.14340

CrossRefView Record in ScopusGoogle Scholar

Wösten et al., 2006

J.H.M. Wösten, J. Van Den Berg, P. Van Eijk, G.J.M. Gevers, W.B.J.T. Giesen, A. Hooijer, A. Idris, P.H. Leenman, D.S. Rais, C. Siderius, M.J. Silvius, N. Suryadiputra, I.T. WibisonoInterrelationships between hydrology and ecology in fire degraded tropical peat swamp forests

Int. J. Water Resour. Dev., 22 (2006), pp. 157-174, 10.1080/07900620500405973

CrossRefView Record in ScopusGoogle Scholar

Yarranton and Morrison, 1974

G.A. Yarranton, R.G. MorrisonSpatial dynamics of a primary succession: nucleation

J. Ecol., 62 (1974), p. 417, 10.2307/2258988

CrossRefGoogle Scholar

Zahawi et al., 2013

R.A. Zahawi, K.D. Holl, R.J. Cole, J.L. ReidTesting applied nucleation as a strategy to facilitate tropical forest recovery

J. Appl. Ecol., 50 (2013), pp. 88-96, 10.1111/1365-2664.12014

CrossRefView Record in ScopusGoogle Scholar

Zhang, 2016

Z. ZhangVariable selection with stepwise and best subset approaches

Ann. Transl. Med., 4 (2016), 10.21037/atm.2016.03.35


Google Scholar

Zuur and Ieno, 2016

A.F. Zuur, E.N. IenoA protocol for conducting and presenting results of regression-type analyses

Methods Ecol. Evol., 7 (2016), pp. 636-645, 10.1111/2041-210X.12577

View Record in ScopusGoogle Scholar

Zuur et al., 2010

A.F. Zuur, E.N. Ieno, C.S. ElphickA protocol for data exploration to avoid common statistical problems: data exploration

Methods Ecol. Evol., 1 (2010), pp. 3-14, 10.1111/j.2041-210X.2009.00001.x

View Record in ScopusGoogle Scholar