Repository Universitas Pakuan

Detail Karya Ilmiah Dosen

Asep Saepulrohman

Judul : Rice Disease Image Classification using MobileNetV2 Pretrained Model with AcivationAttention Visualization using Gradient-weighted Class Activation Mapping (Grad-CAM)
Abstrak :

Rice is one of the staple foods in Asia, particularly in Indonesia. With an ever-increasing demand of food, a stable rice production is mandatory and pest is one of the major challenges faced in sustainable rice production. In this research, we proposed an image classification model based on the MobileNetV2 pretrained model combined with a visual explanation based on the gradient-weighted class activation (Grad-CAM) algorithm to build a robust and accurate classification of rice diseases. The model is based on convolutional neural network (CNN) architecture. First, transfer learning is done from the MobileNetV2 pretrained model to create the classification model, followed by Grad-CAM to produce the visual explanation of the CNN. Finally, the model is trained on 7,077 rice images containing four different diseases (bacterial blight, blast, brown spot, and tungro) with a data augmentation process to increase the dataset’s overall variance. This process yields a model with a classification accuracy of up to 99,9%, combined with visual feature explanation making this model a robust and efficient classification model.

Tahun : 2024 Media Publikasi : Seminar Internasional
Kategori : Jurnal No/Vol/Tahun : 1 / 11 / 2024
ISSN/ISBN : 2338-0403
PTN/S : Universitas Pakuan Program Studi : ILMU KOMPUTER
Bibliography :

 

1.

"Crops and livestock products", Food and Agriculture Organization of the United Nations, Dec. 2022, [online] Available: https://www.fao.org/faostat/en/#data/QCL/visualize.

Google Scholar 

 

 

2.

"Analisis Produktivitas Padi di Indonesia 2020 (Hasil Survei Ubinan", Badan Pusat Statistik 5203028, Dec. 2021.

Google Scholar 

 

 

3.

Y. LeCun, Y. Bengio and G. Hinton, "Deep learning", Nature, vol. 521, no. 7553, May 2015.

CrossRef  Google Scholar 

 

4.

F. Zhuang et al., "A Comprehensive Survey on Transfer Learning", Proc. IEEE, vol. 109, no. 1, pp. 43-76, Jan. 2021.

View Article 

 

 Google Scholar 

5.

R. Ribani and M. Marengoni, "A Survey of Transfer Learning for Convolutional Neural Networks", 2019 32nd SIBGRAPI Conference on Graphics Patterns and Images Tutorials (SIBGRAPI-T), pp. 47-57, Oct. 2019.

View Article 

 

 Google Scholar 

 

6.

P. Kulkarni, A. Karwande, T. Kolhe, S. Kamble, A. Joshi and M. Wyawahare, "Plant Disease Detection Using Image Processing and Machine Learning", ArXiv210610698 Cs, Nov. 2021, [online] Available: http://arxiv.org/abs/2106.10698.

Google Scholar 

 

 

7.

M. Khoiruddin, A. Junaidi and W. A. Saputra, "Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network", J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 2, no. 1, Feb. 2022.

CrossRef  Google Scholar 

 

 

8.

E. Anggiratih, S. Siswanti, S. K. Octaviani and A. Sari, "Klasifikasi Penyakit Tanaman Padi Menggunakan Model Deep Learning Efficientnet B3 dengan Transfer Learning", J. Ilm. SINUS, vol. 19, no. 1, Jan. 2021.

CrossRef  Google Scholar 

 

9.

G. Zhou, W. Zhang, A. Chen, M. He and X. Ma, "Rapid Detection of Rice Disease Based on FCM-KM and Faster RCNN Fusion", IEEE Access, vol. 7, pp. 143190-143206, 2019.

View Article 

 

 Google Scholar 

 

10.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh and D. Batra, "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization", Int. J. Comput. Vis., vol. 128, no. 2, pp. 336-359, Feb. 2020.

CrossRef  Google Scholar 

 

11.

J. Wagner, J. M. Köhler, T. Gindele, L. Hetzel, J. T. Wiedemer and S. Behnke, "Interpretable and Fine-Grained Visual Explanations for Convolutional Neural Networks", 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9089-9099, Jun. 2019.

View Article 

 

 Google Scholar 

 

12.

Y. Goyal, Z. Wu, J. Ernst, D. Batra, D. Parikh and S. Lee, "Counterfactual Visual Explanations", ICML, 2019.

Google Scholar 

 

13.

F. Martínez-Plumed et al., "CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories", IEEE Trans. Knowl. Data Eng., vol. 33, no. 8, pp. 3048-3061, Aug. 2021.

View Article 

 

 Google Scholar 

 

14.

K. Sethy, Rice Leaf Disease Image Samples, vol. 1, Jul. 2020.

Google Scholar 

 

 

15.

A. Rácz, D. Bajusz and K. Héberger, "Effect of Dataset Size and Train/Test Split Ratios in QSAR/QSPR Multiclass Classification", Molecules, 2021.

CrossRef  Google Scholar 

 

 

16.

B. S. Bari et al., "A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework", PeerJ Comput. Sci., vol. 7, pp. e432, Apr. 2021.

CrossRef  Google Scholar 

 

17.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, "ImageNet: A large-scale hierarchical image database", 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255, Jun. 2009.

View Article 

 

 Google Scholar 

18.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L.-C. Chen, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510-4520, Jun. 2018.

View Article 

 

 Google Scholar 

 

19.

G. Herlambang, "KLASIFIKASI PRODUK FASHION PADA E – COMMERCE MENGGUNAKAN METODE DEEP LEARNING", Skripsi Universitas Pakuan Bogor, 2020.

Google Scholar 

 

 

20.

S. R. D. Amiril, "Implementasi Algoritma Convolutional Neural Network pada Klasifikasi Penyakit Padi Melalui Citra Daun", Universitas Islam Indonesia Yogyakarta Skripsi, 2020.

Google Scholar 

 

 

21.

P. K. Sethy, N. K. Barpanda, A. K. Rath and S. K. Behera, "Deep feature based rice leaf disease identification using support vector machine", Comput. Electron. Agric., vol. 175, pp. 105527, Aug. 2020.

CrossRef  Google Scholar 

 

 

22.

M. Abadi et al., "TensorFlow: a system for large-scale machine learning", Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation in OSDI’16, pp. 265-283, Nov. 2016.

Google Scholar 

 

URL : https://jtsiskom.undip.ac.id/index

 

Document

 
back