Judul | : | Rice Disease Image Classification using MobileNetV2 Pretrained Model with AcivationAttention Visualization using Gradient-weighted Class Activation Mapping (Grad-CAM) | |||
Abstrak | : | Rice is one of the staple foods in Asia, particularly in Indonesia. With an ever-increasing demand of food, a stable rice production is mandatory and pest is one of the major challenges faced in sustainable rice production. In this research, we proposed an image classification model based on the MobileNetV2 pretrained model combined with a visual explanation based on the gradient-weighted class activation (Grad-CAM) algorithm to build a robust and accurate classification of rice diseases. The model is based on convolutional neural network (CNN) architecture. First, transfer learning is done from the MobileNetV2 pretrained model to create the classification model, followed by Grad-CAM to produce the visual explanation of the CNN. Finally, the model is trained on 7,077 rice images containing four different diseases (bacterial blight, blast, brown spot, and tungro) with a data augmentation process to increase the dataset’s overall variance. This process yields a model with a classification accuracy of up to 99,9%, combined with visual feature explanation making this model a robust and efficient classification model. |
|||
Tahun | : | 2024 | Media Publikasi | : | Seminar Internasional |
Kategori | : | Jurnal | No/Vol/Tahun | : | 1 / 11 / 2024 |
ISSN/ISBN | : | 2338-0403 | |||
PTN/S | : | Universitas Pakuan | Program Studi | : | ILMU KOMPUTER |
Bibliography | : |
1.
"Crops and livestock products", Food and Agriculture Organization of the United Nations, Dec. 2022, [online] Available: https://www.fao.org/faostat/en/#data/QCL/visualize.
2.
"Analisis Produktivitas Padi di Indonesia 2020 (Hasil Survei Ubinan", Badan Pusat Statistik 5203028, Dec. 2021.
3.
Y. LeCun, Y. Bengio and G. Hinton, "Deep learning", Nature, vol. 521, no. 7553, May 2015.
4.
F. Zhuang et al., "A Comprehensive Survey on Transfer Learning", Proc. IEEE, vol. 109, no. 1, pp. 43-76, Jan. 2021.
5.
R. Ribani and M. Marengoni, "A Survey of Transfer Learning for Convolutional Neural Networks", 2019 32nd SIBGRAPI Conference on Graphics Patterns and Images Tutorials (SIBGRAPI-T), pp. 47-57, Oct. 2019.
6.
P. Kulkarni, A. Karwande, T. Kolhe, S. Kamble, A. Joshi and M. Wyawahare, "Plant Disease Detection Using Image Processing and Machine Learning", ArXiv210610698 Cs, Nov. 2021, [online] Available: http://arxiv.org/abs/2106.10698.
7.
M. Khoiruddin, A. Junaidi and W. A. Saputra, "Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network", J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 2, no. 1, Feb. 2022.
8.
E. Anggiratih, S. Siswanti, S. K. Octaviani and A. Sari, "Klasifikasi Penyakit Tanaman Padi Menggunakan Model Deep Learning Efficientnet B3 dengan Transfer Learning", J. Ilm. SINUS, vol. 19, no. 1, Jan. 2021.
9.
G. Zhou, W. Zhang, A. Chen, M. He and X. Ma, "Rapid Detection of Rice Disease Based on FCM-KM and Faster RCNN Fusion", IEEE Access, vol. 7, pp. 143190-143206, 2019.
10.
R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh and D. Batra, "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization", Int. J. Comput. Vis., vol. 128, no. 2, pp. 336-359, Feb. 2020.
11.
J. Wagner, J. M. Köhler, T. Gindele, L. Hetzel, J. T. Wiedemer and S. Behnke, "Interpretable and Fine-Grained Visual Explanations for Convolutional Neural Networks", 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9089-9099, Jun. 2019.
12.
Y. Goyal, Z. Wu, J. Ernst, D. Batra, D. Parikh and S. Lee, "Counterfactual Visual Explanations", ICML, 2019.
13.
F. Martínez-Plumed et al., "CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories", IEEE Trans. Knowl. Data Eng., vol. 33, no. 8, pp. 3048-3061, Aug. 2021.
15.
A. Rácz, D. Bajusz and K. Héberger, "Effect of Dataset Size and Train/Test Split Ratios in QSAR/QSPR Multiclass Classification", Molecules, 2021.
16.
B. S. Bari et al., "A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework", PeerJ Comput. Sci., vol. 7, pp. e432, Apr. 2021.
17.
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, "ImageNet: A large-scale hierarchical image database", 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255, Jun. 2009.
18.
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L.-C. Chen, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510-4520, Jun. 2018.
19.
G. Herlambang, "KLASIFIKASI PRODUK FASHION PADA E – COMMERCE MENGGUNAKAN METODE DEEP LEARNING", Skripsi Universitas Pakuan Bogor, 2020.
20.
S. R. D. Amiril, "Implementasi Algoritma Convolutional Neural Network pada Klasifikasi Penyakit Padi Melalui Citra Daun", Universitas Islam Indonesia Yogyakarta Skripsi, 2020.
21.
P. K. Sethy, N. K. Barpanda, A. K. Rath and S. K. Behera, "Deep feature based rice leaf disease identification using support vector machine", Comput. Electron. Agric., vol. 175, pp. 105527, Aug. 2020.
22.
M. Abadi et al., "TensorFlow: a system for large-scale machine learning", Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation in OSDI’16, pp. 265-283, Nov. 2016.
|
|||
URL | : | https://jtsiskom.undip.ac.id/index |