Repository Universitas Pakuan

Detail Karya Ilmiah Dosen

Effendi Tri Bahtiar, Asep Denih, Trisna Priadi, Gustian Rama Putra, Andiana Koswara, Naresworo Nugroho, Dede Hermawan

Judul : Comparing the Building Code Sawn Lumber’s Wet Service Factors (CM) with Four Commercial Wood Species Laboratory Tests
Abstrak :

Abstract:

Indonesian Wooden Building Code (SNI 7973-2013) has adopted the National Design Specification (NDS) for Wood Construction since 2013. A periodic harmonization of the building-code-designated values (i.e., reference design values and adjustment factors) with the experimental data of commercial wood species is necessary. This study aimed to compare the building code’s wet service factors (CM) with the laboratory test of some commercial wood species. Since wood is weaker when its moisture content is high, the wet service factor (CM) must adjust the sawn lumber reference design values if the building serves in wet or aquatic environments. Four commercial wood species, namely pine (Pinus merkusii), agathis (Agathis dammara), red meranti (Shorea leprosula), and mahogany (Swietenia mahagoni), were subjected to mechanical property tests. To calculate the empirical CM values, the mechanical properties tests were conducted on air-dry and wet wood. Instead of testing the full-sized timber, which contains the growth characteristics and defects, this study chose clearwood specimens to resemble the boundary condition of the ceteris paribus (other things being equal). The wet (water-saturated) specimens were immersed in water for 65 days, and the test was carried out when the specimen was still immersed. The test arrangement imitated the submerged wood as the worst-case scenario of the wet environment where the construction serves, rather than green or partially immersed timber. As many as 40 specimens were tested to compare each mechanical property’s wet service factor; thus, this study reported 200 specimens’ laboratory test results. The empirical CM values to adjust the modulus of elasticity, modulus of rupture, shear strength parallel-tograin, tensile strength parallel-to-grain, and maximum crushing strength (CM = 0.59, 0.76, 0.65, 0.73, and 0.67, respectively) were significantly lower than SNI 7973-2013 designated values (CM = 0.9, 0.85, 0.97, 1, and 0.8, respectively). The empirical CM for the compression stress perpendicular-to-grain at the proportional limit and that at the 0.04” deformation (CM = 0.66) were slightly lower than the designated values (CM = 0.67), although they were not significantly different. This study resulted in lower empirical CM values than the designated ones, which found that the building code lacked conservativeness. The lacked conservativeness is mainly attributed to the building code’s recent choices, e.g., (1) the wet service environment basis is the green timber rather than the fully watersaturated one, and (2) the ratio of near minimum (5% lower) distribution value is chosen as the CM value rather than the average of wet timber’s mechanical property divided by the air-dry one. This study proposes changing both recent choices to alternative ones to develop more safe and reliable designated CM values.

Keywords: adjustment factor; allowable stress; building code; cooling tower; mechanical properties; reference design value; wood construction

Tahun : 2022 Media Publikasi : Jurnal Internasional
Kategori : Jurnal No/Vol/Tahun : 2094 / 13 / 2022
ISSN/ISBN : https://doi.org/10.3390/f13122094
PTN/S : Institut Pertanian Bogor, Universitas Pakuan Program Studi : ILMU KOMPUTER
Bibliography :

1. Sun, Q.; Huang, Q.; Duan, Z.; Zhang, A. Recycling Potential Comparison of Mass Timber Constructions and Concrete Buildings: A Case Study in China. Sustainability 2022, 14, 6174. https://doi.org/10.3390/su14106174.

2. Duan, Z.; Huang, Q.; Zhang, Q. Life Cycle Assessment of Mass Timber Construction: A Review. Build. Environ. 2022, 221, 109320. https://doi.org/10.1016/j.buildenv.2022.109320.

3. Wijnants, L.; Allacker, K.; De Troyer, F. Life-Cycle Assessment of Timber Frame Constructions—The Case of Rooftop Extensions. J. Clean. Prod. 2019, 216, 333–345. https://doi.org/10.1016/j.jclepro.2018.12.278.

4. Krišták, L.; Igaz, R.; Brozman, D.; Réh, R.; Šiagiová, P.; Stebila, J.; Očkajová, A. Life Cycle Assessment of Timber Formwork: Case Study. Adv. Mater. Res. 2014, 1001, 155–161. https://doi.org/10.4028/www.scientific.net/AMR.1001.155.

5. Achenbach, H.; Wenker, J.L.; Rüter, S. Life Cycle Assessment of Product- and Construction Stage of Prefabricated Timber Houses: A Sector Representative Approach for Germany According to EN 15804, EN 15978 and EN 16485. Eur. J. Wood Wood Prod. 2018, 76, 711–729. https://doi.org/10.1007/s00107-017-1236-1.

6. SNI 7973:2013; Spesifikasi Desain Untuk Konstruksi Kayu (Design Specification for Wooden Construction). Badan Standardisasi Nasional: Jakarta, Indonesia, 2013; p. 312.

7. American National Standard Institution; American Wood Council. NDS, National Design Specification for Wood Construction, ASD/LRFD; American National Standard Institution: New York, NY, USA; American Wood Council: Leesburg, VA, USA, 2012.

8. Firmanti, A.; Bachtiar, E.T.; Surjokusumo, S.; Komatsu, K.; Kawai, S. Mechanical Stress Grading of Tropical Timbers without Regard to Species. J. Wood Sci. 2005, 51, 339–347. https://doi.org/10.1007/s10086-004-0661-z.

9. ASTM D5536-94(1999); Standard Practice for Sampling Forest Trees for Determination of Clear Wood Properties. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2017.

10. ASTM D143-14; Standard Test Methods for Small Clear Specimens of Timber. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2014.

11. ASTM D2555-05; Standard Practice for Establishing Clear Wood Strength Values. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2005; pp. 1–18.

12. ASTM D2915; Standard Practice for Sampling and Data-Analysis for Structural Wood and Wood-Based Products. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2017; pp. 1–14.

13. ASTM D245; Standard Practice for Establishing Structural Grades and Related Allowable Properties for Visually Graded Lumber. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2000; Volume 6, p. 46.

14. ASTM D198; Standard Test Methods of Static Tests of Lumber in Structural Sizes. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2021; p. 52.

15. ASTM D5457-19c; Standard Specification for Computing Reference Resistance of Wood-Based Materials and Structural Connections for Load and Resistance Factor Design. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2019; pp. 1–12;.

16. Hayatunnufus, A.; Nugroho, N.; Bahtiar, E.T. Faktor Stabilitas Balok Kayu Pada Konfigurasi Pembebanan Terpusat (Stability Factor of Wooden Beams in One Point Loading). J. Tek. Sipil dan Lingkung. 2022, 7, 129–146. https://doi.org/10.29244/jsil.7.2.129- 146.

17. Bahtiar, E.T.; Erizal, E.; Hermawan, D.; Nugroho, N.; Hidayatullah, R. Experimental Study of Beam Stability Factor of Sawn Lumber Subjected to Concentrated Bending Loads at Several Points. Forests 2022, 13, 1480. https://doi.org/10.3390/f13091480.

18. Nocetti, M.; Brunetti, M.; Bacher, M. Effect of Moisture Content on the Flexural Properties and Dynamic Modulus of Elasticity of Dimension Chestnut Timber. Eur. J. Wood Wood Prod. 2015, 73, 51–60. https://doi.org/10.1007/s00107-014-0861-1.

19. Bahtiar, E.T.; Arinana; Nugroho, N.; Nandika, D. Daily Cycle of Air Temperature and Relative Humidity Effect to Creep Deflection of Wood Component of Low-Cost House in Cibeureum-Bogor, West Java, Indonesia. Asian J. Sci. Res. 2014, 7, 501–512. https://doi.org/10.3923/ajsr.2014.501.502.

20. Dietsch, P.; Franke, S.; Franke, B.; Gamper, A.; Winter, S. Methods to Determine Wood Moisture Content and Their Applicability in Monitoring Concepts. J. Civ. Struct. Health Monit. 2015, 5, 115–127. https://doi.org/10.1007/s13349-014-0082-7.

21. Mvondo, R.R.N.; Meukam, P.; Jeong, J.; Meneses, D.D.S.; Nkeng, E.G. Influence of Water Content on the Mechanical and Chemical Properties of Tropical Wood Species. Results Phys. 2017, 7, 2096–2103. https://doi.org/10.1016/j.rinp.2017.06.025.

22. Korkmaz, O.; Buyuksari, Ü. Effects of Moisture Content on Mechanical Properties of Micro-Size Oak Wood. BioResources 2019, 14, 7655–7663. https://doi.org/10.15376/biores.14.4.7655-7663.

23. Kaku, C.; Hasemi, Y.; Kamikawa, D.; Suzuki, T.; Yasui, N.; Koshihara, M.; Nagao, H. Influence of Water Content on the Mechanical Properties of Wood Exposed to Fire. J. Struct. Constr. Eng. (Trans. AIJ) 2017, 82, 299–308. https://doi.org/10.3130/aijs.82.299.

24. Madsen, B. Recommended Moisture Adjustment Factors for Lumber Stresses. Can. J. Civ. Eng. 1982, 9, 602–610. https://doi.org/10.1139/l82-070.

25. Cousins, W.J. Young’s Modulus of Hemicellulose as Related to Moisture Content. Wood Sci. Technol. 1978, 12, 161–167. https://doi.org/10.1007/BF00372862.

26. Cousins, W.J. Elastic Modulus of Lignin as Related to Moisture Content. Wood Sci. Technol. 1976, 10, 9–17. https://doi.org/10.1007/BF00376380.

27. Cannell, M.G.R.; Morgan, J. Young’s Modulus of Sections of Living Branches and Tree Trunks. Tree Physiol. 1987, 3, 355–364. https://doi.org/10.1093/treephys/3.4.355.

28. Kane, B. Branch Strength of Bradford Pear (Pyrus Calleryanavar. ‘Bradford’). Arboric. Urban For. 2007, 33, 283–291. https://doi.org/10.48044/jauf.2007.032.

29. Kane, B.; Clouston, P. Tree Pulling Tests of Large Shade Trees in the Genus Acer. Arboric. Urban For. 2008, 34, 101–109. https://doi.org/10.48044/jauf.2008.013.

30. Kane, B. Determining Parameters Related to the Likelihood of Failure of Red Oak (Quercus Rubra L.) from Winching Tests. Trees 2014, 28, 1667–1677. https://doi.org/10.1007/s00468-014-1076-0.

31. Glass, S.V.; Zelinka, S.L. Moisture Relations and Physical Properties of Wood. In Wood Handbook: Wood as an Engineering Material; General Technical Report FPL-GTR-282; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2021.

32. Cahyono, T.D.; Wahyudi, I.; Priadi, T.; Febrianto, F.; Darmawan, W.; Bahtiar, E.T.; Ohorella, S.; Novriyanti, E. The Quality of 8 and 10 Years Old Samama Wood (Anthocephalus Macrophyllus). J. Indian Acad. Wood Sci. 2015, 12, 22–28. https://doi.org/10.1007/s13196-015-0140-8.

33. Cahyono, T.D.; Wahyudi, I.; Priadi, T.; Febrianto, F.; Bahtiar, E.T.; Novriyanti, E. Analysis on Wood Quality, Geometry Factor, and Their Effects on Lathe Check of Samama (Anthocephalus Macrophyllus) Veneer. J. Korean Wood Sci. Technol. 2016, 44, 828– 841. https://doi.org/10.5658/WOOD.2016.44.6.828.

34. Engelund, E.T.; Thygesen, L.G.; Svensson, S.; Hill, C.A.S. A Critical Discussion of the Physics of Wood–Water Interactions. Wood Sci. Technol. 2013, 47, 141–161. https://doi.org/10.1007/s00226-012-0514-7.

35. Stamm, A.J. A Review of Nine Methods for Determining the Fiber Saturation Points of Wood and Wood Products. Wood Sci. 1971, 4, 114–128.

36. Hoffmeyer, P.; Engelund, E.T.; Thygesen, L.G. Equilibrium Moisture Content (EMC) in Norway Spruce during the First and Second Desorptions. Holzforschung 2011, 65, 875–882. https://doi.org/10.1515/HF.2011.112.

37. Hill, C.A.S.; Forster, S.C.; Farahani, M.R.M.; Hale, M.D.C.; Ormondroyd, G.A.; Williams, G.R. An Investigation of Cell Wall Micropore Blocking as a Possible Mechanism for the Decay Resistance of Anhydride Modified Wood. Int. Biodeterior. Biodegrad. 2005, 55, 69–76. https://doi.org/10.1016/j.ibiod.2004.07.003.

38. Hernández, R.E.; Bizoň, M. Changes In Shrinkage And Tangential Compression Strength Of Sugar Maple Below And Above The Fiber Saturation Point. Wood Fiber Sci. 1994, 26, 360–369.

39. Engelund, E.T.; Thygesen, L.G.; Hoffmeyer, P. Water Sorption in Wood and Modified Wood at High Values of Relative Humidity. Part 2: Appendix. Theoretical Assessment of the Amount of Capillary Water in Wood Microvoids. Holzforschung 2010, 64, 325–330. https://doi.org/10.1515/hf.2010.061.

40. Thygesen, L.G.; Tang Engelund, E.; Hoffmeyer, P. Water Sorption in Wood and Modified Wood at High Values of Relative Humidity. Part I: Results for Untreated, Acetylated, and Furfurylated Norway Spruce. Holzforschung 2010, 64, 315–323. https://doi.org/10.1515/hf.2010.044.

41. Green, D.W. Wood: Strength and Stiffness. In Encyclopedia of Materials: Science and Technology; Elsevier: Amsterdam, The Netherlands, 2001; pp. 9732–9736.

42. McGrail, S. Wooden Shipbuilding and the Interpretation of Shipwrecks. By J. Richard Steffy. Archaeological Journal 1999, 156, 423–423, doi:10.1080/00665983.1999.11078919.

43. Tsinker, G.P. Handbook of Port and Harbor Engineering; Springer US: Boston, MA, USA, 1997; ISBN 978-1-4757-0865-3.

44. Rasolofo, M.V. Use of Mangroves by Traditional Fishermen in Madagascar. Mangroves Salt Marshes 1997, 1, 243–253. https://doi.org/10.1023/A:1009923022474.

45. Bahtiar, E.T.; Nugroho, N.; Rahman, M.M.; Arinana; Kartika Sari, R.; Wirawan, W.; Hermawan, D. Estimation the Remaining Service-Lifetime of Wooden Structure of Geothermal Cooling Tower. Case Stud. Constr. Mater. 2017, 6, 91–102. https://doi.org/10.1016/j.cscm.2017.01.001.

46. Bahtiar, E.T.; Nugroho, N.; Hermawan, D.; Wirawan, W.; Khuschandra Triangle Bracing System to Reduce the Vibration Level of Cooling Tower—Case Study in PT Star Energy Geothermal (Wayang Windu) Ltd.—Indonesia. Case Stud. Constr. Mater. 2018, 8, 248–257. https://doi.org/10.1016/j.cscm.2018.01.006.

47. Bahtiar, E.T.; Nugroho, N.; Arinana, A.; Darwis, A. Pendugaan Sisa Umur Pakai Kayu Komponen Cooling Tower Di Pembangkit Listrik Tenaga Panas Bumi (PLTP) Unit II Kamojang (Estimating the Remaining Life of Wood Cooling Tower Component in Geothermal Power Plant Unit II Kamojang). J. Tek. Sipil 2012, 19, 103. https://doi.org/10.5614/jts.2012.19.2.2.

48. Bahtiar, E.T.; Nugroho, N.; Hermawan, D.; Wirawan, W.; Arinana; Sari, R.K.; Rahman, M.M.; Sidik, M. Wood Deterioration of Cooling Tower Structure at Geothermal Power Plant. Asian J. Appl. Sci. 2017, 10, 79–87. https://doi.org/10.3923/ajaps.2017.79.87.

49. EN 1995-1-1:2004; Eurocode 5: Design of Timber Structures—Part 1-1: General—Common Rules and Rules for Buildings. The European Union: Geneva, Switzerland, 2004; pp. 1–121.

50. NZS 3603:1993; Timber Structures Standard. Ministry of Business Innovation & Employment: Wellington, New Zealand, 1993.

51. Granello, G.; Palermo, A. Creep in Timber: Research Overview and Comparison between Code Provisions. N. Z. Timber Des. J. 2019, 27, 6–22.

52. AWC; ANSI. National Design Specification (NDS) for Wood Construction; American Wood Council’s (AWC): Leesburg, VA, USA; ANSI: New York, NY, USA, 2018; p. 192.

53. CSA O86:19; Engineering Design in Wood. CSA Group: Toronto, ON, Canada, 2019;.

54. ISO 10816-3:2009; Mechanical Vibration—Evaluation of Machine Vibration by Measurements on Non-Rotating Parts—Part 3: Industrial Machines with Nominal Power above 15 KW and Nominal Speeds between 120 r/Min and 15 000 r/Min When Measured in Situ. International Organization for Standardization: Geneva, Switzerland, 2009; pp. 1–12;.

55. Díaz-Francés, E.; Rubio, F.J. On the Existence of a Normal Approximation to the Distribution of the Ratio of Two Independent Normal Random Variables. Stat. Pap. 2013, 54, 309–323. https://doi.org/10.1007/s00362-012-0429-2.

56. Wistara, N.J.; Sukowati, M.; Pamoengkas, P. The Properties of Red Meranti Wood (Shorea Leprosula Miq) from Stand with Thinning and Shade Free Gap Treatments. J. Indian Acad. Wood Sci. 2016, 13, 21–32. https://doi.org/10.1007/s13196-016-0161-y.

57. Alokabel, K.; Lay, Y.E.; Wonlele, T. Penentuan Kelas Kuat Kayu Lokal Di Pulau Timor Sebagai Bahan Konstruksi (Local Wood Strength Grade Determination in Timor Island as Construction Materials). JUTEKS—J. Tek. Sipil 2018, 2, 139. https://doi.org/10.32511/juteks.v2i2.168.

58. Lempang, M. Basic Properties and Uses of Agathis (Agathis Hamii M. Dr.) Wood from South Sulawesi. J. Penelit. Kehutan. Wallacea 2017, 6, 157–167. https://doi.org/10.18330/jwallacea.2017.vol6iss2pp157-167.

59. Bahtiar, E.T.; Nugroho, N.; Massijaya, M.Y.; Roliandi, H.; Augusti, R.; Satriawan, A. Method to Estimate Mechanical Properties of Glulam on Flexure Testing Based on Its Laminae Characteristics and Position. Indones. J. Phys. 2016, 22, 57–67. https://doi.org/10.5614/itb.ijp.2011.22.2.4.

60. Nugroho, N.; Bahtiar, E.T.; Nurmadina Grading Development of Indonesian Bamboo Culm: Case Study on Tali Bamboo (Gigantochloa Apus). In Proceedings of the 2018 World Conference on Timber Engineering, Seoul, Republic of Korea, 20–23 August 2018; pp. 1–6.

61. Bahtiar, E.T.; Imanullah, A.P.; Hermawan, D.; Nugroho, N.; Abdurachman Structural Grading of Three Sympodial Bamboo Culms (Hitam, Andong, and Tali) Subjected to Axial Compressive Load. Eng. Struct. 2019, 181, 233–245. https://doi.org/10.1016/j.engstruct.2018.12.026.

62. Nurmadina; Nugroho, N.; Bahtiar, E.T. Structural Grading of Gigantochloa Apus Bamboo Based on Its Flexural Properties. Constr. Build. Mater. 2017, 157, 1173–1189. https://doi.org/10.1016/j.conbuildmat.2017.09.170.

63. Nugroho, N.; Bahtiar, E.T. Buckling Formulas for Designing a Column with Gigantochloa Apus. Case Stud. Constr. Mater. 2021, 14, e00516. https://doi.org/10.1016/j.cscm.2021.e00516.

64. Nugroho, N.; Kartini; Bahtiar, E.T. Cross-Species Bamboo Grading Based on Flexural Properties. IOP Conf. Ser. Earth Environ. Sci. 2021, 891, 012008. https://doi.org/10.1088/1755-1315/891/1/012008.

65. Nugroho, N.; Bahtiar, E.T.; Budhijatmiko Lelono, A. Kekuatan Bambu Betung (Dendrocalamus Asper Backer Ex K.Heyne) Menahan Gaya Normal Tekanan Dan Tarikan (The Strength of Betung Bamboo (Dendrocalamus Asper Backer Ex K. Heyne) to Support Normal Force in Compression and Tension). J. Penelit. Has. Hutan 2022, 40, 37–48. https://doi.org/10.20886/jphh.2022.40.1.37-48.

66. Bahtiar, E.T.; Malkowska, D.; Trujillo, D.; Nugroho, N. Experimental Study on Buckling Resistance of Guadua Angustifolia Bamboo Column. Eng. Struct. 2021, 228, 111548. https://doi.org/10.1016/j.engstruct.2020.111548.

67. Bahtiar, E.T.; Trujillo, D.; Nugroho, N. Compression Resistance of Short Members as the Basis for Structural Grading of Guadua Angustifolia. Constr. Build. Mater. 2020, 249, 118759. https://doi.org/10.1016/j.conbuildmat.2020.118759.

68. Hermawan, D.; Budiman, I.; Febrianto, F.; Subyakto, S.; Pari, G.; Ghozali, M.; Bahtiar, E.T.; Sutiawan, J.; Azevedo, A.R.G. de Enhancement of the Mechanical, Self-Healing and Pollutant Adsorption Properties of Mortar Reinforced with Empty Fruit Bunches and Shell Chars of Oil Palm. Polymers 2022, 14, 410. https://doi.org/10.3390/polym14030410.

69. NI-5 PKKI 1961; Peraturan Konstruksi Kayu Indonesia (Indonesian Wooden Building Code). PKKI: Jakarta, Indonesia, 1961.

70. Tze, W.T.Y.; Wang, S.; Rials, T.G.; Pharr, G.M.; Kelley, S.S. Nanoindentation of Wood Cell Walls: Continuous Stiffness and Hardness Measurements. Compos. Part A Appl. Sci. Manuf. 2007, 38, 945–953. https://doi.org/10.1016/j.compositesa.2006.06.018.

71. Madsen, B. Moisture Content—Strength Relationship for Lumber Subjected to Bending. Can. J. Civ. Eng. 1975, 2, 466–473. https://doi.org/10.1139/l75-043.

72. Winandy, J.E. Effect of Moisture Content on Strength of CCA-Treated Lumber. Wood Fiber Sci. 1995, 27, 168–177.

73. Soares, L.S.Z.R.; Fraga, I.F.; Paula, L. de S. e; Arroyo, F.N.; Ruthes, H.C.; Aquino, V.B. de M.; Molina, J.C.; Panzera, T.H.; Branco, L.A.M.N.; Christoforo, A.L.; et al. Influence of Moisture Content on Physical and Mechanical Properties of Cedrelinga Catenaeformis Wood. BioResources 2021, 16, 6758–6765. https://doi.org/10.15376/biores.16.4.6758-6765.

74. Barrett, J.D.; Lau, W. Bending Strength Adjustments for Moisture Content for Structural Lumber. Wood Sci. Technol. 1991, 25. https://doi.org/10.1007/BF00225236.

75. Forest Products Laboratory—USDA. Wood Handbook: Wood as an Engineering Material; General Technical Report FPL-GTR-190; Forest Products Laboratory—USDA: Madison, WI, USA, 2010. 

76. Martawijaya, A.; Kartasujana, I.; Kadir, K.; Prawira, S.A. Atlas Kayu Indonesia Jilid I (Indonesian Wood Atlas, Volume I); Departemen Kehutanan—Badang Penelitian dan Pengembangan Kehutanan: Bogor, Indonesia, 2005.

77. Martawijaya, A.; Kartasujana, I.; Mandang, Y.I.; Prawira, S.A.; Kadir, K. Atlas Kayu Indonesia, Jilid II (Indonesian Wood Atlas, Volume II); IAWA Journal, Ed.; Departemen Kehutanan—Badang Penelitian dan Pengembangan Kehutanan: Bogor, Indonesia, 1990; Volume 11.

78. Darmawan, W.; Nandika, D.; Hasna Afaf, B.D.; Rahayu, I.; Lumongga, D. Radial Variation in Selected Wood Properties of Indonesian Merkusii Pine. J. Korean Wood Sci. Technol. 2018, 46, 323–337. https://doi.org/10.5658/WOOD.2018.46.4.323.

79. Ishiguri, F.; Makino, K.; Wahyudi, I.; Takashima, Y.; Iizuka, K.; Yokota, S.; Yoshizawa, N. Stress Wave Velocity, Basic Density, and Compressive Strength in 34-Year-Old Pinus Merkusii Planted in Indonesia. J. Wood Sci. 2011, 57, 526–531. https://doi.org/10.1007/s10086-011-1208-8.

80. ASTM D1990-19; Standard Practice for Establishing Allowable Properties for Visually-Graded Dimension Lumber from InGrade Tests of Full-Size Specimens. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2019.

URL : https://www.mdpi.com/1999-4907/13/12/2094

 

Document

 
back