Repository Universitas Pakuan

Detail Karya Ilmiah Dosen

Chih-Chien Lee, Johan Iskandar, Ade Kurniawan, Hung-Pin Hsu, Ya-Fen Wu, Hsin-Ming Cheng, Shun-Wei Liu

Judul : Modulation of the carrier balance of lead-halide perovskite nanocrystals by polyelectrolyte hole transport layers for near-infrared light-emitting diodes
Abstrak :

An alternative material, methylamine (MA)-doped poly[3-(4-carboxymethyl)thiophene-2,5-diyl] (P3CT) as hole transport layer (HTL) was investigated for efficient solution-processed near-infrared perovskite light-emitting diodes (NIR PeLEDs). The best NIR PeLEDs performance was achieved with an optimized composition ratio of the MA-doped P3CT (1:1) due to the balance of the electron and hole carrier in the active layer. The charge-balanced NIR PeLEDs exhibit the highest radiance of 858.37 W sr−1 m−2, a low turn-on voltage of 1.82 V, and an external quantum efficiency of 7.44%. Our findings show that using P3CT as an alternative HTL has the potential to significantly improve PeLED performance, allowing it to play a role in the development of practical applications in high-power NIR LEDs

Tahun : 2022 Media Publikasi : Jurnal Internasional
Kategori : Jurnal No/Vol/Tahun : 9 / 8 / 2022
ISSN/ISBN : 2405-8440
PTN/S : National Taiwan University of Science and Technogoly, Universitas Pakuan Program Studi : TEKNIK KOMPUTER (D3)
Bibliography :

[1] R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X.C. Zeng,
J. Huang, High-gain and low-driving-voltage photodetectors based on organolead
triiodide perovskites, Adv. Mater. 27 (2015) 1912–1918.
[2] A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore,
J.A. Christians, T. Chakrabarti, J.M. Luther, Quantum dot-induced phase
stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics, Science (80-.)
354 (2016) 92–95.
[3] B. Yang, F. Zhang, J. Chen, S. Yang, X. Xia, T. Pullerits, W. Deng, K. Han,
Ultrasensitive and fast all-inorganic perovskite-based photodetector via fast carrier
diffusion, Adv. Mater. 29 (2017) 1–8.
[4] P.A. Jaeki Jeong, Minjin Kim, Jongdeuk Seo, Haizhou Lu, M.K. Aditya Mishra,
Yingguo Yang, Michael A. Hope, Felix T. Eickemeyer, Y.J. Yung Jin Yoon, In
Woo Choi, Barbara Primera Darwich, Seung Ju Choi, U.R. Jun Hee Lee,
Bright Walker, Shaik M. Zakeeruddin, M.G. Lyndon Emsley, J.Y.K. Anders Hagfeldt,
Dong Suk Kim, Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells,
Nature 592 (2020) 381–385.
[5] H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, Y.K. Kim, K.S. Kim,
M.G. Kim, T.J. Shin, S. Il Seok, Perovskite solar cells with atomically coherent
interlayers on SnO2 electrodes, Nature 598 (2021) 444–450.
[6] H. Huang, A.S. Susha, S.V. Kershaw, T.F. Hung, A.L. Rogach, Control of emission
color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by
Precipitation temperature, Adv. Sci. 2 (2015) 1–5.
[7] L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon,
R.X. Yang, A. Walsh, M.V. Kovalenko, Nanocrystals of Cesium lead halide
perovskites (CsPbX3, X ¼ Cl, Br, and I): novel optoelectronic materials showing
bright emission with wide color gamut, Nano Lett. 15 (2015) 3692–3696.
[8] Y.H. Kim, H. Cho, J.H. Heo, T.S. Kim, N.S. Myoung, C.L. Lee, S.H. Im, T.W. Lee,
Multicolored organic/inorganic hybrid perovskite light-emitting diodes, Adv.
Mater. 27 (2015) 1248–1254.
Table 2. EIS parameters obtained by fitting the Nyquist plots with the equivalent circuit for the perovskite LED based on different HTLs.
Devices Rs (Ω) (%) R1 (Ω) (%) C1 (nF) (%) R2 (Ω) (%) C2 (nF) (%) L (H) (%) R3 (Ω) (%)
Control 107.2  0.95 3925  0.22 2.35  0.29 1745  1.71 2283.2  2.34 0.29  8.26 5998  5.93
1MA 64.6  0.94 715  0.23 0.94  0.31 370.8  0.63 26.1  0.97
2MA 113.1  0.37 435  0.22 0.96  0.33 334.7  0.33 20.1  0.58
3MA 95.6  0.33 304  0.26 1.01  0.35 363.8  0.36 8.87  0.51
Figure 7. Operational stability of NIR PeLEDs with encapsulation measured
under ambient conditions as a function of operation time at a constant current
density of 10 mA cm2.
C. Lee et al. Heliyon 8 (2022) e10504
9
626364Figure 7
[9] G. Li, F.W.R. Rivarola, N.J.L.K. Davis, S. Bai, T.C. Jellicoe, F. De La Pe~na, S. Hou,
C. Ducati, F. Gao, R.H. Friend, N.C. Greenham, Z.K. Tan, Highly efficient perovskite
nanocrystal light-emitting diodes enabled by a universal Crosslinking method, Adv.
Mater. 28 (2016) 3528–3534.
[10] N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang,
Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian,
C. Jin, F. Gao, R.H. Friend, J. Wang, W. Huang, Perovskite light-emitting diodes
based on solution-processed self-organized multiple quantum wells, Nat. Photonics
10 (2016) 699–704.
[11] J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian, H. He, D. Di, C. Lin,
Y. Cheng, J. Wang, Y. Jin, Efficient and high-color-purity light-emitting diodes
based on in Situ grown films of CsPbX3 (X ¼ Br, I) nanoplates with controlled
thicknesses, ACS Nano 11 (2017) 11100–11107.
[12] X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin,
J. You, Efficient green light-emitting diodes based on quasi-two-dimensional
composition and phase engineered perovskite with surface passivation, Nat.
Commun. 9 (2018) 2–9.
[13] Z. Xiao, R.A. Kerner, N. Tran, L. Zhao, G.D. Scholes, B.P. Rand, Engineering
perovskite nanocrystal surface termination for light-emitting diodes with external
quantum efficiency exceeding 15, Adv. Funct. Mater. 29 (2019) 1–7.
[14] L. Zhao, K. Roh, S. Kacmoli, K. Al Kurdi, S. Jhulki, S. Barlow, S.R. Marder,
C. Gmachl, B.P. Rand, Thermal management enables bright and stable perovskite
light-emitting diodes, Adv. Mater. 32 (2020) 1–7.
[15] Y.F. Liu, Y.F. Zhang, M. Xu, Z.Y. Zhang, J. Tao, Y. Gu, J. Feng, H.B. Sun, Enhanced
performance of perovskite light-emitting devices with improved perovskite
crystallization, IEEE Photonics J 9 (2017).
[16] V. Prakasam, F. Di Giacomo, R. Abbel, D. Tordera, M. Sessolo, G. Gelinck,
H.J. Bolink, Efficient perovskite light-emitting diodes: effect of composition,
morphology, and transport layers, ACS Appl. Mater. Interfaces 10 (2018)
41586–41591.
[17] Y. Miao, Y. Ke, N. Wang, W. Zou, M. Xu, Y. Cao, Y. Sun, R. Yang, Y. Wang, Y. Tong,
W. Xu, L. Zhang, R. Li, J. Li, H. He, Y. Jin, F. Gao, W. Huang, J. Wang, Stable and
bright formamidinium-based perovskite light-emitting diodes with high energy
conversion efficiency, Nat. Commun. 10 (2019) 1–7.
[18] H. Zhang, C. Tu, C. Xue, J. Wu, Y. Cao, W. Zou, W. Xu, K. Wen, J. Zhang, Y. Chen,
J. Lai, L. Zhu, K. Pan, L. Xu, Y. Wei, H. Lin, N. Wang, W. Huang, J. Wang, Low roll-
off and high stable electroluminescence in three-dimensional FAPbI3Perovskites
with Bifunctional-molecule additives, Nano Lett. 21 (2021) 3738–3744.
[19] C.C. Lee, J. Iskandar, A.K. Akbar, H.M. Cheng, S.W. Liu, Controllable crystallization
based on the aromatic ammonium additive for efficiently near-infrared perovskite
light-emitting diodes, Org. Electron. 99 (2021), 106327.
[20] T. Dittrich, F. Lang, O. Shargaieva, J. Rappich, N.H. Nickel, E. Unger, B. Rech,
Diffusion length of photo-generated charge carriers in layers and powders of
CH3NH3PbI3 perovskite, Appl. Phys. Lett. 109 (2016) 1–5.
[21] H. Lin, L. Zhu, H. Huang, C.J. Reckmeier, C. Liang, A.L. Rogach, W.C.H. Choy,
Efficient near-infrared light-emitting diodes based on organometallic halide
perovskite-poly(2-ethyl-2-oxazoline) nanocomposite thin films, Nanoscale 8 (2016)
19846.
[22] H. Cho, S.H. Jeong, M.H. Park, Y.H. Kim, C. Wolf, C.L. Lee, J.H. Heo, A. Sadhanala,
N.S. Myoung, S. Yoo, S.H. Im, R.H. Friend, T.W. Lee, Overcoming the
electroluminescence efficiency limitations of perovskite light-emitting diodes,
Science (80-.) 350 (2015) 1222–1225.
[23] Z. Xiao, R.A. Kerner, L. Zhao, N.L. Tran, K.M. Lee, T.W. Koh, G.D. Scholes,
B.P. Rand, Efficient perovskite light-emitting diodes featuring nanometre-sized
crystallites, Nat. Photonics 11 (2017) 108–115.
[24] S. Wieghold, J.P. Correa-Baena, L. Nienhaus, S. Sun, K.E. Shulenberger, Z. Liu,
J.S. Tresback, S.S. Shin, M.G. Bawendi, T. Buonassisi, Precursor concentration
affects grain size, crystal orientation, and local performance in mixed-ion lead
perovskite solar cells, ACS Appl. Energy Mater. 1 (2018) 6801–6808.
[25] M. You, H. Wang, F. Cao, C. Zhang, T. Zhang, L. Kong, L. Wang, D. Zhao, J. Zhang,
X. Yang, Improving efficiency and stability in quasi-2D perovskite light-emitting
diodes by a multifunctional LiF interlayer, ACS Appl. Mater. Interfaces 12 (2020)
43018–43023.
[26] Y. Lu, Z. Wang, J. Chen, Y. Peng, X. Tang, Z. Liang, F. Qi, W. Chen, Tuning hole
transport layers and optimizing perovskite films thickness for high efficiency
CsPbBr3 nanocrystals electroluminescence light-emitting diodes, J. Lumin. 234
(2021), 117952.
[27] X. Li, X. Liu, X. Wang, L. Zhao, T. Jiu, J. Fang, Polyelectrolyte based hole-
transporting materials for high performance solution processed planar perovskite
solar cells, J. Mater. Chem. A. 3 (2015) 15024–15029.
[28] X. Li, Y.C. Wang, L. Zhu, W. Zhang, H.Q. Wang, J. Fang, Improving efficiency and
reproducibility of perovskite solar cells through aggregation control in
polyelectrolytes hole transport layer, ACS Appl. Mater. Interfaces 9 (2017)
31357–31361.
[29] S. Li, Y.L. Cao, W.H. Li, Z.S. Bo, A brief review of hole transporting materials
commonly used in perovskite solar cells, Rare Met. 40 (2021) 2712–2729.
[30] Y.H. Kim, C. Wolf, H. Kim, T.W. Lee, Charge carrier recombination and ion
migration in metal-halide perovskite nanoparticle films for efficient light-emitting
diodes, Nano Energy 52 (2018) 329–335.
[31] L.M. Herz, Charge-carrier mobilities in metal halide perovskites: fundamental
mechanisms and limits, ACS Energy Lett. 2 (2017) 1539–1548.
[32] H. Fan, F. Li, P. Wang, Z. Gu, J.H. Huang, K.J. Jiang, B. Guan, L.M. Yang, X. Zhou,
Y.L. Song, Methylamine-assisted growth of uniaxial-oriented perovskite thin films
with millimeter-sized grains, Nat. Commun. 11 (2020) 1–10.
[33] R.A. Kerner, T.H. Schloemer, P. Schulz, J.J. Berry, J. Schwartz, A. Sellinger,
B.P. Rand, Amine additive reactions induced by the soft Lewis acidity of Pb2þ in
halide perovskites. Part II: impacts of amido Pb impurities in methylammonium
lead triiodide thin films, J. Mater. Chem. C 7 (2019) 5244–5250.
[34] Z. Zhu, Y. Bai, H.K.H. Lee, C. Mu, T. Zhang, L. Zhang, J. Wang, H. Yan, S.K. So,
S. Yang, Polyfluorene derivatives are high-performance organic hole-transporting
materials for inorganic-organic hybrid perovskite solar cells, Adv. Funct. Mater. 24
(2014) 7357–7365.
[35] M. Wang, W. Li, H. Wang, K. Yang, X. Hu, K. Sun, S. Lu, Z. Zang, Small molecule
modulator at the interface for efficient perovskite solar cells with high short-circuit
current density and Hysteresis free, Adv. Electron. Mater. 6 (2020).
[36] T. Chen, W.L. Chen, B.J. Foley, J. Lee, J.P.C. Ruff, J.Y.P. Ko, C.M. Brown,
L.W. Harriger, D. Zhang, C. Park, M. Yoon, Y.M. Chang, J.J. Choi, S.H. Lee, Origin of
long lifetime of band-edge charge carriers in organic–inorganic lead iodide
perovskites, Proc. Natl. Acad. Sci. U. S. A 114 (2017) 7519–7524.
[37] W. Kong, Z. Ye, Z. Qi, B. Zhang, M. Wang, A. Rahimi-Iman, H. Wu, Characterization
of an abnormal photoluminescence behavior upon crystal-phase transition of
perovskite CH3NH3PbI3, Phys. Chem. Chem. Phys. 17 (2015) 16405–16411.
[38] B. Tang, L.J. Ruan, C. Qin, A. Shu, H. He, Y. Ma, High stability and temperature-
dependent photoluminescence of orthorhombic CsPbI3 perovskite nanoparticles,
Adv. Opt. Mater. 8 (2020) 1–8.
[39] Y. Liu, H. Lu, J. Niu, H. Zhang, S. Lou, C. Gao, Y. Zhan, X. Zhang, Q. Jin, L. Zheng,
Temperature-dependent photoluminescence spectra and decay dynamics of
MAPbBr3 and MAPbI3 thin films, AIP Adv. 8 (2018).
[40] F. Zhang, Z.F. Shi, Z.Z. Ma, Y. Li, S. Li, D. Wu, T.T. Xu, X.J. Li, C.X. Shan, G.T. Du,
Silica coating enhances the stability of inorganic perovskite nanocrystals for
efficient and stable down-conversion in white light-emitting devices, Nanoscale 10
(2018) 20131–20139.
[41] Y.P. Varshni, Temperature dependence of the energy gap in semiconductors,
Physica 34 (1967) 149–154.
[42] B.T. Diroll, H. Zhou, R.D. Schaller, Low-temperature absorption,
photoluminescence, and lifetime of CsPbX3 (X ¼ Cl, Br, I) nanocrystals, Adv. Funct.
Mater. 28 (2018) 1–7.
[43] K.P. Goetz, A.D. Taylor, F. Paulus, Y. Vaynzof, Shining light on the
photoluminescence properties of metal halide perovskites, Adv. Funct. Mater. 30
(2020).
[44] M. Baranowski, P. Plochocka, Excitons in metal-halide perovskites, Adv. Energy
Mater. 10 (2020).
[45] M. Yu, S. Yuan, H.Y. Wang, J.S. Zhao, Y. Qin, L.M. Fu, J.P. Zhang, X.C. Ai,
Characterization of the influences of morphology on the intrinsic properties of
perovskite films by temperature-dependent and time-resolved spectroscopies, Phys.
Chem. Chem. Phys. 20 (2018) 6575–6581.
[46] S. Kalytchuk, O. Zhovtiuk, S.V. Kershaw, R. Zboril, A.L. Rogach, Temperature-
dependent exciton and trap-related photoluminescence of CdTe quantum dots
embedded in a NaCl matrix: implication in thermometry, Small 12 (2016) 466–476.
[47] R. Chen, Q.L. Ye, T. He, V.D. Ta, Y. Ying, Y.Y. Tay, T. Wu, H. Sun, Exciton
localization and optical properties improvement in nanocrystal-embedded ZnO
core-shell nanowires, Nano Lett. 13 (2013) 734–739.
[48] W. Kong, A. Rahimi-Iman, G. Bi, X. Dai, H. Wu, Oxygen intercalation induced by
Photocatalysis on the surface of hybrid lead halide perovskites, J. Phys. Chem. C
120 (2016) 7606–7611.
[49] A. Mishra, Z. Ahmad, F. Touati, R.A. Shakoor, M.K. Nazeeruddin, One-dimensional
facile growth of MAPbI3 perovskite micro-rods, RSC Adv. 9 (2019) 11589–11594.
[50] Z. Liang, S. Zhang, X. Xu, N. Wang, J. Wang, X. Wang, Z. Bi, G. Xu, N. Yuan, J. Ding,
A large grain size perovskite thin film with a dense structure for planar
heterojunction solar cells via spray deposition under ambient conditions, RSC Adv.
5 (2015) 60562–60569.
[51] H. Wang, X. Gong, D. Zhao, Y.B. Zhao, S. Wang, J. Zhang, L. Kong, B. Wei,
R. Quintero-Bermudez, O. Voznyy, Y. Shang, Z. Ning, Y. Yan, E.H. Sargent, X. Yang,
A multi-functional molecular modifier enabling efficient large-area perovskite light-
emitting diodes, Joule 4 (2020) 1977–1987.
[52] Z. Wen, F. Xie, W.C.H. Choy, Stability of electroluminescent perovskite quantum
dots light-emitting diode, Nano Sel. (2021) 1–26.
[53] G. Lozano, The role of metal halide perovskites in next-generation lighting devices,
J. Phys. Chem. Lett. 9 (2018) 3987–3997.
[54] Y. Cheng, H.W. Li, J. Zhang, Q.D. Yang, T. Liu, Z. Guan, J. Qing, C.S. Lee,
S.W. Tsang, Spectroscopic study on the impact of methylammonium iodide loading
time on the electronic properties in perovskite thin films, J. Mater. Chem. A. 4
(2015) 561–567.
[55] X. Sun, C. Han, K. Wang, H. Yu, J. Li, K. Lu, J. Qin, H. Yang, L. Deng, F. Zhao,
Q. Yang, B. Hu, Effect of Bathocuproine organic additive on optoelectronic
properties of highly efficient methylammonium lead Bromide perovskite light-
emitting diodes, ACS Appl. Energy Mater. 1 (2018) 6992–6998.
[56] H. Kim, L. Zhao, J.S. Price, A.J. Grede, K. Roh, A.N. Brigeman, M. Lopez, B.P. Rand,
N.C. Giebink, Hybrid perovskite light emitting diodes under intense electrical
excitation, Nat. Commun. 9 (2018).
[57] F.-W. Yang, Y.-S. You, S.-W. Feng, Efficient carrier injection, transport, relaxation, and
recombination associated with a stronger carrier localization and a low Polarization
effect of nonpolar mplane inGaN/GaN light-emitting diodes, Nanoscale 12 (2017).
C. Lee et al. Heliyon 8 (2022) e10504
10

 

URL : https://www.sciencedirect.com/science/article/pii/S2405844022017923

 

Document

 
back